Patents by Inventor Damien Stucki

Damien Stucki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11868742
    Abstract: Some embodiments provide methods and apparatus for quantum random number generation based on a single bit or multi bit Quanta Image Sensor (QIS) providing single-photon counting over a time interval for each of an array of pixels of the QIS, wherein random number data is generated based on the number of photons counted over the time interval for each of the pixels.
    Type: Grant
    Filed: February 9, 2023
    Date of Patent: January 9, 2024
    Assignees: ID QUANTIQUE SA, TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Emna Amri, Yacine Felk, Damien Stucki, Jiaju Ma, Eric R. Fossum
  • Publication number: 20230185535
    Abstract: Some embodiments provide methods and apparatus for quantum random number generation based on a single bit or multi bit Quanta Image Sensor (QIS) providing single-photon counting over a time interval for each of an array of pixels of the QIS, wherein random number data is generated based on the number of photons counted over the time interval for each of the pixels.
    Type: Application
    Filed: February 9, 2023
    Publication date: June 15, 2023
    Applicants: ID QUANTIQUE SA, TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Emna AMRI, Yacine FELK, Damien STUCKI, Jiaju MA, Eric R. FOSSUM
  • Publication number: 20220244918
    Abstract: Some embodiments provide methods and apparatus for quantum random number generation based on a single bit or multi bit Quanta Image Sensor (QIS) providing single-photon counting over a time interval for each of an array of pixels of the QIS, wherein random number data is generated based on the number of photons counted over the time interval for each of the pixels.
    Type: Application
    Filed: September 9, 2021
    Publication date: August 4, 2022
    Applicants: ID QUANTIQUE SA, TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Emna Amri, Yacine Felk, Damien Stucki, Jiaju Ma, Eric R. Fossum
  • Patent number: 11057200
    Abstract: An apparatus for enhancing secret key rate exchange over quantum channel in QKD systems includes an emitter system with a quantum emitter and a receiver system with a quantum receiver, wherein both systems are connected by a quantum channel and a service communication channel. User interfaces within the systems allow to define a first quantum channel loss budget based on the distance to be covered between the quantum emitter and the quantum receiver and the infrastructure properties of the quantum channel as well as a second quantum channel loss budget associated to the loss within the realm of the emitter system. The emitter system is adapted to define the optimal mean number of photons of coherent states to be emitted based on the first and the second quantum channel loss budgets.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: July 6, 2021
    Assignee: id Quantique SA
    Inventors: Matthieu Legré, Grégoire Ribordy, Damien Stucki
  • Patent number: 10999069
    Abstract: The invention relates to a QKD System Active combiner (200) adapted to be installed in a QKD apparatus, said QKD apparatus comprising an emitter (100), a receiver (110) and QKD systems (102/112), wherein the emitter (100) is adapted to send communication signals to the receiver (110) through the QKD System Active combiner (200), characterized in that the QKD System Active combiner (200) comprises an active attenuation system comprising a processing unit (230) adapted to automatically control at least one variable optical attenuator (150) through a control channel (290) in order to control an attenuation of a signal to be sent to the receiver, and a detector/monitor (240) adapted to monitor the intensity of the signal downstream the attenuation, and wherein the processing unit is adapted to control the variable optical attenuator (150) based on a QBER information or an intensity of a signal received by the receiver, sent by the QKD systems (112) through a classical channel (250).
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: May 4, 2021
    Assignee: ID QUANTIQUE SA
    Inventors: Matthieu Legré, Damien Stucki
  • Publication number: 20200099520
    Abstract: An apparatus for enhancing secret key rate exchange over quantum channel in QKD systems includes an emitter system with a quantum emitter and a receiver system with a quantum receiver, wherein both systems are connected by a quantum channel and a service communication channel. User interfaces within the systems allow to define a first quantum channel loss budget based on the distance to be covered between the quantum emitter and the quantum receiver and the infrastructure properties of the quantum channel as well as a second quantum channel loss budget associated to the loss within the realm of the emitter system. The emitter system is adapted to define the optimal mean number of photons of coherent states to be emitted based on the first and the second quantum channel loss budgets.
    Type: Application
    Filed: November 24, 2017
    Publication date: March 26, 2020
    Inventors: Matthieu Legré, Grégoire Ribordy, Damien Stucki
  • Publication number: 20200044835
    Abstract: The invention relates to a QKD System Active combiner (200) adapted to be installed in a QKD apparatus, said QKD apparatus comprising an emitter (100), a receiver (110) and QKD systems (102/112), wherein the emitter (100) is adapted to send communication signals to the receiver (110) through the QKD System Active combiner (200), characterized in that the QKD System Active combiner (200) comprises an active attenuation system comprising a processing unit (230) adapted to automatically control at least one variable optical attenuator (150) through a control channel (290) in order to control an attenuation of a signal to be sent to the receiver, and a detector/monitor (240) adapted to monitor the intensity of the signal downstream the attenuation, and wherein the processing unit is adapted to control the variable optical attenuator (150) based on a QBER information or an intensity of a signal received by the receiver, sent by the QKD systems (112) through a classical channel (250).
    Type: Application
    Filed: October 3, 2017
    Publication date: February 6, 2020
    Inventors: Matthieu Legre, Damien Stucki
  • Publication number: 20190212985
    Abstract: Some embodiments provide methods and apparatus for quantum random number generation based on a single bit or multi bit Quanta Image Sensor (QIS) providing single-photon counting over a time interval for each of an array of pixels of the QIS, wherein random number data is generated based on the number of photons counted over the time interval for each of the pixels.
    Type: Application
    Filed: May 5, 2017
    Publication date: July 11, 2019
    Applicants: ID QUANTIQUE SA, TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Emna Amri, Yacine Felk, Damien Stucki, Jiaju Ma, Eric R. Fossum