Patents by Inventor Damon G. Holmes
Damon G. Holmes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12132453Abstract: Embodiments of RF amplifiers and packaged RF amplifier devices each include an amplification path with a transistor die, and an output-side impedance matching circuit having a T-match circuit topology. The output-side impedance matching circuit includes a first inductive element connected between the transistor output terminal and a quasi RF cold point node, a second inductive element connected between the quasi RF cold point node and an output of the amplification path, and a first capacitance connected between the quasi RF cold point node and a ground reference node. The RF amplifiers and devices also include a baseband termination circuit connected to the quasi RF cold point node, which includes a third inductive element, a resistor, and a second capacitance in series between the quasi RF cold point node and the ground reference node and a third capacitance between a baseband termination circuit node and the ground reference node.Type: GrantFiled: September 10, 2021Date of Patent: October 29, 2024Assignee: NXP USA, Inc.Inventors: Jeffrey Spencer Roberts, Ning Zhu, Damon G. Holmes
-
Patent number: 11705872Abstract: Embodiments of RF amplifiers and packaged RF amplifier devices each include an amplification path with a transistor die, and an output-side impedance matching circuit having a T-match circuit topology. The output-side impedance matching circuit includes a first inductive element (e.g., first wirebonds) connected between the transistor output terminal and a quasi RF cold point node, a second inductive element (e.g., second wirebonds) connected between the quasi RF cold point node and an output of the amplification path, and a first capacitance connected between the quasi RF cold point node and a ground reference node. The RF amplifiers and devices also include a baseband termination circuit connected to the quasi RF cold point node, which includes an envelope resistor, an envelope inductor, and an envelope capacitor coupled in series between the quasi RF cold point node and the ground reference node.Type: GrantFiled: December 4, 2020Date of Patent: July 18, 2023Assignee: NXP USA, Inc.Inventors: Jeffrey Spencer Roberts, Ning Zhu, Olivier Lembeye, Damon G. Holmes, Jeffrey Kevin Jones
-
Publication number: 20230079916Abstract: Embodiments of RF amplifiers and packaged RF amplifier devices each include an amplification path with a transistor die, and an output-side impedance matching circuit having a T-match circuit topology. The output-side impedance matching circuit includes a first inductive element connected between the transistor output terminal and a quasi RF cold point node, a second inductive element connected between the quasi RF cold point node and an output of the amplification path, and a first capacitance connected between the quasi RF cold point node and a ground reference node. The RF amplifiers and devices also include a baseband termination circuit connected to the quasi RF cold point node, which includes a third inductive element, a resistor, and a second capacitance in series between the quasi RF cold point node and the ground reference node and a third capacitance between a baseband termination circuit node and the ground reference node.Type: ApplicationFiled: September 10, 2021Publication date: March 16, 2023Inventors: Jeffrey Spencer Roberts, Ning Zhu, Damon G. Holmes
-
Patent number: 11515847Abstract: A packaged RF amplifier device includes input and output leads and a transistor die. The transistor die includes a transistor with a drain-source capacitance below 0.1 picofarads per watt. The device also includes a conductive connection between the transistor output terminal and the output lead, and a baseband termination circuit between the transistor output terminal and a ground reference node. The baseband termination circuit presents a low impedance to signal energy at envelope frequencies and a high impedance to signal energy at RF frequencies. The baseband termination circuit includes an inductive element, a resistor, and a capacitor connected in series between the transistor output terminal and the ground reference node. Except for a minimal impedance transformation associated with the conductive connection, the device is unmatched between the transistor output terminal and the output lead by being devoid of impedance matching circuitry between the transistor output terminal and the output lead.Type: GrantFiled: September 16, 2020Date of Patent: November 29, 2022Assignee: NXP USA, Inc.Inventors: Damon G. Holmes, Ning Zhu, Jeffrey Spencer Roberts, Jeffrey Kevin Jones
-
Patent number: 11444586Abstract: A radio frequency amplifier includes a transistor, an input impedance matching circuit (e.g., a single-section T-match circuit or a multiple-section bandpass circuit), and a fractional harmonic resonator circuit. The input impedance matching circuit is coupled between an amplification path input and a transistor input terminal. An input of the fractional harmonic resonator circuit is coupled to the amplification path input, and an output of fractional harmonic resonator circuit is coupled to the transistor input terminal. The fractional harmonic resonator circuit is configured to resonate at a resonant frequency that is between a fundamental frequency of operation of the RF amplifier and a second harmonic of the fundamental frequency. According to a further embodiment, the fractional harmonic resonator circuit resonates at a fraction, x, of the fundamental frequency, wherein the fraction is between about 1.25 and about 1.9 (e.g., x?1.5).Type: GrantFiled: October 29, 2019Date of Patent: September 13, 2022Assignee: NXP USA, Inc.Inventors: Jeffrey Spencer Roberts, Ning Zhu, Damon g. Holmes, Jeffrey Kevin Jones
-
Patent number: 11444044Abstract: A power transistor die includes a semiconductor die with input and output die sides, and a transistor integrally formed in the semiconductor die between the input die side and the output die side, where the transistor has an input and an output (e.g., a gate and a drain, respectively). The power transistor die also includes an input bondpad and a first output bondpad integrally formed in the semiconductor die between the input die side and the transistor. The input bondpad is electrically connected to the input of the transistor. A conductive structure directly electrically connects the output of the transistor to the first output bondpad. A second output bondpad, which also may be directly electrically connected to the transistor output, may be integrally formed in the semiconductor die between the transistor and the output die side.Type: GrantFiled: December 31, 2019Date of Patent: September 13, 2022Assignee: NXP USA, Inc.Inventors: Ibrahim Khalil, Ning Zhu, Darrell Glenn Hill, Damon G. Holmes
-
Publication number: 20220085772Abstract: A packaged RF amplifier device includes input and output leads and a transistor die. The transistor die includes a transistor with a drain-source capacitance below 0.1 picofarads per watt. The device also includes a conductive connection between the transistor output terminal and the output lead, and a baseband termination circuit between the transistor output terminal and a ground reference node. The baseband termination circuit presents a low impedance to signal energy at envelope frequencies and a high impedance to signal energy at RF frequencies. The baseband termination circuit includes an inductive element, a resistor, and a capacitor connected in series between the transistor output terminal and the ground reference node. Except for a minimal impedance transformation associated with the conductive connection, the device is unmatched between the transistor output terminal and the output lead by being devoid of impedance matching circuitry between the transistor output terminal and the output lead.Type: ApplicationFiled: September 16, 2020Publication date: March 17, 2022Inventors: Damon G. Holmes, Ning Zhu, Jeffrey Spencer Roberts, Jeffrey Kevin Jones
-
Patent number: 11190146Abstract: Doherty power amplifier (PA) devices (e.g., packages and modules) including integrated output combining networks are disclosed. In embodiments, the Doherty PA device includes a first amplifier die having a first transistor with a first output terminal at which a first amplified signal is generated, a second amplifier die having a second transistor with a second output terminal at which a second amplified signal is generated, and an output combining network. The output combining network includes, in turn, a combining node integrally formed with the second amplifier die and electrically coupled to the second output terminal. At least one die-to-die bond wire electrically couples the first output terminal to the combining node. The at least one die-to-die bond wire has an electrical length, which is results in a 90 degree phase shift imparted to the first amplified signal between the first output terminal and the combining node.Type: GrantFiled: January 8, 2020Date of Patent: November 30, 2021Assignee: NXP USA, Inc.Inventors: Ramanujam Srinidhi Embar, Ebrahim M. Al Seragi, Anthony Lamy, Ricardo Uscola, Damon G. Holmes
-
Publication number: 20210287983Abstract: A semiconductor device includes a transistor die having top and bottom die surfaces, an electrically conductive structure, and input and output pads formed at the top die surface. An isolation structure is interposed between the input and output pads of the transistor die. The isolation structure extends above the top die surface, is coupled to the conductive structure, and is connected to a common return path of the transistor die. The isolation structure may be formed from one or more bondwires and is configured to reduce mutual coupling between input and output interconnects of the semiconductor device.Type: ApplicationFiled: March 16, 2020Publication date: September 16, 2021Inventors: Ning Zhu, Ibrahim Khalil, Jeffrey Spencer Roberts, Damon G. Holmes
-
Patent number: 11121072Abstract: A semiconductor device includes a transistor die having top and bottom die surfaces, an electrically conductive structure, and input and output pads formed at the top die surface. An isolation structure is interposed between the input and output pads of the transistor die. The isolation structure extends above the top die surface, is coupled to the conductive structure, and is connected to a common return path of the transistor die. The isolation structure may be formed from one or more bondwires and is configured to reduce mutual coupling between input and output interconnects of the semiconductor device.Type: GrantFiled: March 16, 2020Date of Patent: September 14, 2021Assignee: NXP USA, Inc.Inventors: Ning Zhu, Ibrahim Khalil, Jeffrey Spencer Roberts, Damon G. Holmes
-
Publication number: 20210202408Abstract: A power transistor die includes a semiconductor die with input and output die sides, and a transistor integrally formed in the semiconductor die between the input die side and the output die side, where the transistor has an input and an output (e.g., a gate and a drain, respectively). The power transistor die also includes an input bondpad and a first output bondpad integrally formed in the semiconductor die between the input die side and the transistor. The input bondpad is electrically connected to the input of the transistor. A conductive structure directly electrically connects the output of the transistor to the first output bondpad. A second output bondpad, which also may be directly electrically connected to the transistor output, may be integrally formed in the semiconductor die between the transistor and the output die side.Type: ApplicationFiled: December 31, 2019Publication date: July 1, 2021Inventors: Ibrahim Khalil, Ning Zhu, Darrell Glenn Hill, Damon G. Holmes
-
Publication number: 20210175860Abstract: Embodiments of RF amplifiers and packaged RF amplifier devices each include an amplification path with a transistor die, and an output-side impedance matching circuit having a T-match circuit topology. The output-side impedance matching circuit includes a first inductive element (e.g., first wirebonds) connected between the transistor output terminal and a quasi RF cold point node, a second inductive element (e.g., second wirebonds) connected between the quasi RF cold point node and an output of the amplification path, and a first capacitance connected between the quasi RF cold point node and a ground reference node. The RF amplifiers and devices also include a baseband termination circuit connected to the quasi RF cold point node, which includes an envelope resistor, an envelope inductor, and an envelope capacitor coupled in series between the quasi RF cold point node and the ground reference node.Type: ApplicationFiled: December 4, 2020Publication date: June 10, 2021Inventors: Jeffrey Spencer Roberts, Ning Zhu, Olivier Lembeye, Damon G. Holmes, Jeffrey Kevin Jones
-
Publication number: 20210152130Abstract: Doherty power amplifier (PA) devices (e.g., packages and modules) including integrated output combining networks are disclosed. In embodiments, the Doherty PA device includes a first amplifier die having a first transistor with a first output terminal at which a first amplified signal is generated, a second amplifier die having a second transistor with a second output terminal at which a second amplified signal is generated, and an output combining network. The output combining network includes, in turn, a combining node integrally formed with the second amplifier die and electrically coupled to the second output terminal. At least one die-to-die bond wire electrically couples the first output terminal to the combining node. The at least one die-to-die bond wire has an electrical length, which is results in a 90 degree phase shift imparted to the first amplified signal between the first output terminal and the combining node.Type: ApplicationFiled: January 8, 2020Publication date: May 20, 2021Inventors: Ramanujam Srinidhi Embar, Ebrahim M. Al Seragi, Anthony Lamy, Ricardo Uscola, Damon G. Holmes
-
Publication number: 20210126593Abstract: A radio frequency amplifier includes a transistor, an input impedance matching circuit (e.g., a single-section T-match circuit or a multiple-section bandpass circuit), and a fractional harmonic resonator circuit. The input impedance matching circuit is coupled between an amplification path input and a transistor input terminal. An input of the fractional harmonic resonator circuit is coupled to the amplification path input, and an output of fractional harmonic resonator circuit is coupled to the transistor input terminal. The fractional harmonic resonator circuit is configured to resonate at a resonant frequency that is between a fundamental frequency of operation of the RF amplifier and a second harmonic of the fundamental frequency. According to a further embodiment, the fractional harmonic resonator circuit resonates at a fraction, x, of the fundamental frequency, wherein the fraction is between about 1.25 and about 1.9 (e.g., x?1.5).Type: ApplicationFiled: October 29, 2019Publication date: April 29, 2021Inventors: Jeffrey Spencer Roberts, Ning Zhu, Damon g. Holmes, Jeffrey Kevin Jones
-
Patent number: 10784821Abstract: The embodiments described herein provide radio frequency (RF) amplifiers, and in some embodiments provide amplifiers that can be used in high power RF applications. Specifically, the amplifiers described herein may be implemented with multiple resonant circuits to provide class F and inverse class F amplifiers and methods of operation. In general, the resonant circuits are implemented inside a device package with a transistor die to provide high efficiency amplification for a variety of applications.Type: GrantFiled: December 19, 2018Date of Patent: September 22, 2020Assignee: NXP USA, Inc.Inventors: Ning Zhu, Jeffrey Spencer Roberts, Damon G. Holmes
-
Patent number: 10784822Abstract: The embodiments described herein provide radio frequency (RF) amplifiers, and in some embodiments provide amplifiers that can be used in high power RF applications. Specifically, the amplifiers described herein may be implemented with multiple resonant circuits to provide class F and inverse class F amplifiers and methods of operation. In general, the resonant circuits are implemented inside a device package with a transistor die to provide high efficiency amplification for a variety of applications.Type: GrantFiled: December 19, 2018Date of Patent: September 22, 2020Assignee: NXP USA, Inc.Inventors: Ning Zhu, Jeffrey Spencer Roberts, Damon G. Holmes
-
Patent number: 10742174Abstract: Embodiments of RF amplifiers and RF amplifier devices include a transistor, a multiple-section bandpass filter circuit, and a harmonic termination circuit. The bandpass filter circuit includes a first connection node coupled to the amplifier input, a first inductive element coupled between the first connection node and a ground reference node, a first capacitance coupled between the first connection node and a second connection node, a second capacitance coupled between the second connection node and the ground reference node, and a second inductive element coupled between the second connection node and the transistor input. The harmonic termination circuit includes a third inductive element and a third capacitance connected in series between the transistor input and the ground reference node. The harmonic termination circuit resonates at a harmonic frequency of a fundamental frequency of operation of the RF amplifier.Type: GrantFiled: December 21, 2018Date of Patent: August 11, 2020Assignee: NXP USA, Inc.Inventors: Jeffrey Spencer Roberts, Ning Zhu, Damon G. Holmes, Jeffrey Kevin Jones
-
Patent number: 10742178Abstract: Embodiments of RF amplifiers and packaged RF amplifier devices each include a transistor with a drain-source capacitance that is relatively low, an output impedance matching circuit, and a harmonic termination circuit. The impedance matching circuit includes a harmonic termination circuit, which includes a first inductance (a first plurality of bondwires) and a first capacitance coupled in series between the transistor output and a ground reference node. An equivalent capacitance from a combination of the first inductive element and the first capacitance in series effectively increases the drain-source capacitance by at least 10 percent. The impedance matching circuit also includes a second inductance (a second plurality of bondwires) and a second capacitance coupled in series between the transistor output and the ground reference node, where the second inductance and the second capacitance are directly connected.Type: GrantFiled: May 18, 2018Date of Patent: August 11, 2020Assignee: NXP USA, Inc.Inventors: Ning Zhu, Damon G. Holmes, Jeffrey Spencer Roberts
-
Publication number: 20200204119Abstract: Embodiments of RF amplifiers and RF amplifier devices include a transistor, a multiple-section bandpass filter circuit, and a harmonic termination circuit. The bandpass filter circuit includes a first connection node coupled to the amplifier input, a first inductive element coupled between the first connection node and a ground reference node, a first capacitance coupled between the first connection node and a second connection node, a second capacitance coupled between the second connection node and the ground reference node, and a second inductive element coupled between the second connection node and the transistor input. The harmonic termination circuit includes a third inductive element and a third capacitance connected in series between the transistor input and the ground reference node. The harmonic termination circuit resonates at a harmonic frequency of a fundamental frequency of operation of the RF amplifier.Type: ApplicationFiled: December 21, 2018Publication date: June 25, 2020Inventors: Jeffrey Spencer Roberts, Ning Zhu, Damon G. Holmes, Jeffrey Kevin Jones
-
Publication number: 20200204121Abstract: The embodiments described herein provide radio frequency (RF) amplifiers, and in some embodiments provide amplifiers that can be used in high power RF applications. Specifically, the amplifiers described herein may be implemented with multiple resonant circuits to provide class F and inverse class F amplifiers and methods of operation. In general, the resonant circuits are implemented inside a device package with a transistor die to provide high efficiency amplification for a variety of applications.Type: ApplicationFiled: December 19, 2018Publication date: June 25, 2020Applicant: NXP USA, INC.Inventors: NING ZHU, JEFFREY SPENCER ROBERTS, DAMON G. HOLMES