Patents by Inventor Dan B. Kasha

Dan B. Kasha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100267350
    Abstract: A communications device is provided. The communications device includes a first antenna port coupled to a signal line, transmitter circuitry coupled to the signal line and configured to broadcast a radio frequency (RF) output signal across the first antenna port, tuning circuitry coupled to the signal line, and a controller configured to adjust a tuning of the tuning circuitry. The first antenna port, the transmitter circuitry, the tuning circuitry, and the controller are at least partially integrated on the same integrated circuit.
    Type: Application
    Filed: June 28, 2010
    Publication date: October 21, 2010
    Applicant: SILICON LABORATORIES, INC.
    Inventors: Dan B. Kasha, Aslamali A. Rafi, Abhishek V. Kammula, Peter J. Vancorenland, George T. Tuttle
  • Patent number: 7747228
    Abstract: A communications device is provided. The communications device includes a first antenna port coupled to a signal line, transmitter circuitry coupled to the signal line and configured to broadcast a radio frequency (RF) output signal across the first antenna port, tuning circuitry coupled to the signal line, and a controller configured to adjust a tuning of the tuning circuitry. The first antenna port, the transmitter circuitry, the tuning circuitry, and the controller are at least partially integrated on the same integrated circuit.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: June 29, 2010
    Assignee: Silicon Laboratories, Inc.
    Inventors: Dan B. Kasha, Aslamali A. Rafi, Abhishek V. Kammula, Peter J. Vancorenland, George T. Tuttle
  • Publication number: 20100120391
    Abstract: In one embodiment, the present invention includes an amplifier having an input to receive a radio frequency (RF) signal from an output node of a source. An input stage coupled to the amplifier input may include one or more components to aid in processing of incoming signals. One such component coupled between the source and the input of the amplifier is a coupling capacitor used to maintain a bias voltage of the amplifier at a different potential than a DC voltage of the output node. In certain applications, the amplifier and the coupling capacitor may be integrated on a single substrate.
    Type: Application
    Filed: January 25, 2010
    Publication date: May 13, 2010
    Inventors: Dan B. Kasha, G. Tyson Tuttle, Gregory A. Hodgson
  • Patent number: 7667542
    Abstract: In one embodiment, the present invention includes an amplifier having an input to receive a radio frequency (RF) signal from an output node of a source. An input stage coupled to the amplifier input may include one or more components to aid in processing of incoming signals. One such component coupled between the source and the input of the amplifier is a coupling capacitor used to maintain a bias voltage of the amplifier at a different potential than a DC voltage of the output node. In certain applications, the amplifier and the coupling capacitor may be integrated on a single substrate.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: February 23, 2010
    Assignee: Silicon Laboratories Inc.
    Inventors: Dan B. Kasha, G. Tyson Tuttle, Gregory A. Hodgson
  • Publication number: 20090270063
    Abstract: Integrated low-IF (low intermediate frequency) data receivers and associated methods are disclosed that provide advantageous and cost-efficient solutions.
    Type: Application
    Filed: June 30, 2009
    Publication date: October 29, 2009
    Inventors: G. Tyson Tuttle, Dan B. Kasha
  • Publication number: 20080232480
    Abstract: Receiver architectures and related methods are disclosed for high definition (HD) and digital radio FM broadcast receivers. The radio receiver architectures are configured to utilize multiple analog-to-digital converters (ADCs) to handle the digital radio spectrum and can be configured to modify a target IF frequencies depending upon the mode of operation of the receiver. For example, the receiver can include an analog FM reception mode and a digital FM reception mode for which different down-conversions are used for the same analog-plus-digital audio broadcast channel. If desired, the radio broadcast receivers disclosed can be configured so that they only receive digital FM radio content, for example, if the analog FM broadcast was of no interest and/or if the broadcast was all digital.
    Type: Application
    Filed: March 22, 2007
    Publication date: September 25, 2008
    Inventors: G. Tyson Tuttle, Dan B. Kasha, Wade R. Gillham, Richard T. Behrens
  • Patent number: 7426376
    Abstract: An apparatus includes a semiconductor package, a radio receiver and a processor. The radio receiver is located in the semiconductor package and includes at least one gain stage. The processor is located in the semiconductor package to execute stored instructions to control the gain stage(s).
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: September 16, 2008
    Assignee: Silicon Laboratories Inc.
    Inventors: Vishnu S. Srinivasan, G. Tyson Tuttle, Dan B. Kasha, Alessandro Piovaccari
  • Publication number: 20080204144
    Abstract: In one embodiment, the present invention includes an amplifier having an input to receive a radio frequency (RF) signal from an output node of a source. An input stage coupled to the amplifier input may include one or more components to aid in processing of incoming signals. One such component coupled between the source and the input of the amplifier is a coupling capacitor used to maintain a bias voltage of the amplifier at a different potential than a DC voltage of the output node. In certain applications, the amplifier and the coupling capacitor may be integrated on a single substrate.
    Type: Application
    Filed: February 12, 2008
    Publication date: August 28, 2008
    Inventors: Dan B. Kasha, G. Tyson Tuttle, Gregory A. Hodgson
  • Patent number: 7355476
    Abstract: In one embodiment, the present invention includes an amplifier having an input to receive a radio frequency (RF) signal from an output node of a source. An input stage coupled to the amplifier input may include one or more components to aid in processing of incoming signals. One such component coupled between the source and the input of the amplifier is a coupling capacitor used to maintain a bias voltage of the amplifier at a different potential than a DC voltage of the output node. In certain applications, the amplifier and the coupling capacitor may be integrated on a single substrate.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: April 8, 2008
    Assignee: Silicon Laboratories Inc.
    Inventors: Dan B. Kasha, G. Tyson Tuttle, Gregory A. Hodgson
  • Publication number: 20080076363
    Abstract: A system includes a cellular radio and an FM transmitter that are fabricated in the same semiconductor. The FM transmitter includes at least one mixer, a filter and an antenna tuning network. The mixer(s) translate an intermediate carrier frequency of an input signal to generate a second signal that has an FM carrier frequency. The filter removes spectral energy from the second signal to generate a third signal. The antenna tuning network is separate from the filter and produces a fourth signal to drive an antenna in response to the third signal.
    Type: Application
    Filed: September 27, 2006
    Publication date: March 27, 2008
    Inventors: Aslamali A. Rafi, Dan B. Kasha
  • Patent number: 7272375
    Abstract: An integrated low-IF (low intermediate frequency) terrestrial broadcast receiver and associated method are disclosed that provide an advantageous and cost-efficient solution. The integrated receiver includes a mixer, local oscillator generation circuitry, low-IF conversion circuitry, and DSP circuitry. And the integrated receiver is particularly suited for small, portable devices and the reception of terrestrial audio broadcasts, such as FM and AM terrestrial audio broadcast, in such portable devices.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: September 18, 2007
    Assignee: Silicon Laboratories Inc.
    Inventors: G. Tyson Tuttle, Dan B. Kasha
  • Patent number: 7272374
    Abstract: A system and method are disclosed for dynamically selecting high-side injection or low-side injection of local oscillator mixing signals based upon an assessment of signal power within the input signal spectrum that could cause unwanted images in the processed signal. This image rejection assessment provides an advantageous basis upon which to make dynamic high-side versus low-side injection determinations.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: September 18, 2007
    Assignee: Silicon Laboratories Inc.
    Inventors: G. Tyson Tuttle, Dan B. Kasha, Donald A. Kerth
  • Publication number: 20070178863
    Abstract: A receiver for AM and FM broadcast signals is disclosed. FM signals are received from an FM antenna and then processed by receive path circuitry or an FM tuner integrated circuit (IC) to produce audio output signals, such as digital audio output signals. The AM signals are received by an AM antenna and then up-converted using a fixed-clock to a frequency range nearer to the FM signal frequencies. The up-converted AM frequencies are then processed using the receive path circuitry. A multiplexer (MUX) allows for selection of the FM signals or the up-converted AM signals to be passed through for signal processing.
    Type: Application
    Filed: June 21, 2006
    Publication date: August 2, 2007
    Inventors: G. Tyson Tuttle, Dan B. Kasha
  • Patent number: 7127217
    Abstract: On-chip calibration signal generation circuitry is disclosed for filter tuning for radio-frequency communications and associated methods. On-chip circuitry generates a calibration signal that is used to help set a tuning control signal that is received by a tunable front-end filter. In one embodiment, local oscillator (LO) generation circuitry is used to generate the calibration signal. In operation of this embodiment, the LO generation circuitry is tuned to the desired receive channel, or to a frequency at some offset value from the desired receive channel, and the output of the LO generation circuitry is then used as a calibration input signal for a tunable front-end filter. This calibration signal is passed through the receive path circuitry, and the resulting signal is then analyzed to help set a tuning control signal for the tunable front-end filter.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: October 24, 2006
    Assignee: Silicon Laboratories Inc.
    Inventors: G. Tyson Tuttle, Dan B. Kasha
  • Patent number: 5767722
    Abstract: An electronic circuit having a circuit stage, such as a switched capacitor stage or a 1-bit digital-to-analog converter and switched capacitor filter, that is loaded with a load impedance employs current feedforward to substantially cancel effects of the load impedance. A circuit includes a circuit stage and a load impedance following and connected to the circuit stage. A current feedforward circuit is connected to the load impedance, substantially cancelling the load impedance to improve linearity of the digital-to-analog converter or switched capacitor filter.
    Type: Grant
    Filed: April 2, 1996
    Date of Patent: June 16, 1998
    Assignee: Crystal Semiconductor
    Inventors: Dan B. Kasha, Navdeep S. Sooch
  • Patent number: 5729229
    Abstract: A 1-bit discrete time digital-to-analog converter which samples a reference voltage and ground potential onto two charging capacitors during a sample phase of each sampling period, and which transfers the charge on one of the capacitors, as determined by a digital input signal, onto an integrator during a transfer phase of said sampling circuit, draws current from the reference voltages which is independent of the data into the converter. The improvement comprises the addition of at least one phase to each sampling period so that the current drawn from said reference voltage is essentially independent of said digital input signal.
    Type: Grant
    Filed: July 26, 1996
    Date of Patent: March 17, 1998
    Assignee: Cirrus Logic, Inc.
    Inventors: Dan B. Kasha, Donald A. Kerth
  • Patent number: 5644257
    Abstract: The detrimental nonlinear charging currents from an analog input signal through an anti-aliasing filter into a sampling circuit can be minimized by using primary and secondary inputs to the sampling circuit. The secondary input is turned on before the primary input and the charge required to charge the parasitic capacitance inside the sampling circuit and to replenish the channeling charge lost in the previous cycle is supplied primarily through the secondary input. Immediately after the secondary input is turned off the primary input is connected to the sampling node, and only the charge required to fine tune the signal into the sampling capacitor is drawn through the primary input. Therefore, most of the non-linear charge injection is passed through the secondary input, and the signal passed through the primary input is used to fine tune the voltage levels inside the sampling circuit during the actual sampling operation.
    Type: Grant
    Filed: April 22, 1996
    Date of Patent: July 1, 1997
    Assignee: Crystal Semiconductor Corporation
    Inventors: Donald A. Kerth, Dan B. Kasha, Eric J. Swanson, Anthony G. Mellissinos
  • Patent number: 5541599
    Abstract: A 1-bit discrete time digital-to-analog converter which samples a reference voltage and ground potential onto two charging capacitors during a sample phase of each sampling period, and which transfers the charge on one of the capacitors, as determined by a digital input signal, onto an integrator during a transfer phase of said sampling circuit, draws current from the reference voltages which is independent of the data into the converter. The improvement comprises the addition of at least one phase to each sampling period so that the current drawn from said reference voltage is essentially independent of said digital input signal.
    Type: Grant
    Filed: September 25, 1995
    Date of Patent: July 30, 1996
    Assignee: Crystal Semiconductor Corporation
    Inventors: Dan B. Kasha, Donald A. Kerth
  • Patent number: 5412348
    Abstract: A triple cascoded mirror active load includes three transistors (20), (26) and (28) in a first leg and three transistors (22), (30) and (34) in an output leg connected to an output node (18). The first leg receives a current on an input node (14) on the drain of transistor (20). Transistor (20) has the gate thereof connected to the drain of transistor (26) with the gates of transistors (24) and (30) connected together and to a bias voltage. Transistor (20) is mirrored to transistor (22) by connecting the gates thereof together. Similarly, the gates of transistors (28) and (34) are connected together and also to the node (14). In this manner, the node (14) receives a low impedance on the input thereto, whereas the gate of transistor (22) sees a high impedance thereto and with only two transistors, transistors 26 and 28, disposed in a loop as a ratioed cascoded configuration.
    Type: Grant
    Filed: July 1, 1993
    Date of Patent: May 2, 1995
    Assignee: Crystal Semiconductor, Inc.
    Inventors: Dan B. Kasha, Donald A. Kerth
  • Patent number: 5376936
    Abstract: A modified lossy integrator digital-to-analog converter includes an amplifier (46) that receives an input on a summing node (48) and provides an output on a node (52). A feedback capacitor (50) is disposed across the input and output and has an output switched-capacitor (54) disposed in parallel therewith to passively distribute the charge thereacross. Switches (60) and (66) are operable to control the switching operation of the capacitor (54). Two input switched capacitors (70) and (94) are controlled by associated switches to switch charge onto the summing node (48) in a first clock cycle .phi..sub.2. A one-bit data stream modulates the operation such that either the charge from the capacitor (78) is dumped onto the summing node (48) or the charge from the capacitor (94) is dumped onto the summing node (48). This operation during the .phi..sub.2 cycle provides an integrated output that is slew-limited.
    Type: Grant
    Filed: June 16, 1993
    Date of Patent: December 27, 1994
    Assignee: Crystal Semiconductor Corporation
    Inventors: Donald A. Kerth, Dan B. Kasha