Patents by Inventor Dan B. Millward

Dan B. Millward has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7462559
    Abstract: A method of forming (and an apparatus for forming) a metal containing layer on a substrate, particularly a semiconductor substrate or substrate assembly for use in manufacturing a semiconductor or memory device structure, using one or more homoleptic and/or heteroleptic precursor compounds that include, for example, guanidinate, phosphoguanidinate, isoureate, thioisoureate, and/or selenoisoureate ligands using a vapor deposition process is provided.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: December 9, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Dan B. Millward
  • Publication number: 20080286659
    Abstract: Methods for fabricating sublithographic, nanoscale arrays of openings and linear microchannels utilizing self-assembling block copolymers, and films and devices formed from these methods are provided. Embodiments of the invention use a self-templating or multilayer approach to induce ordering of a self-assembling block copolymer film to an underlying base film to produce a multilayered film having an ordered array of nanostructures that can be removed to provide openings in the film which, in some embodiments, can be used as a template or mask to etch openings in an underlying material layer.
    Type: Application
    Filed: April 20, 2007
    Publication date: November 20, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Dan B. Millward
  • Publication number: 20080274413
    Abstract: Methods for fabricating sublithographic, nanoscale microchannels utilizing an aqueous emulsion of an amphiphilic agent and a water-soluble, hydrogel-forming polymer, and films and devices formed from these methods are provided.
    Type: Application
    Filed: March 22, 2007
    Publication date: November 6, 2008
    Applicant: Micron Technology, Inc.
    Inventor: Dan B. Millward
  • Publication number: 20080257187
    Abstract: A method of patterning a substrate is disclosed. An ink material is chemisorbed to at least one region of a stamp and the chemisorbed ink material is transferred to a receptor substrate. The ink material has greater chemical affinity for the receptor substrate than for the at least one region of the stamp. A method of forming the stamp is also disclosed, as are the stamp and a patterning system.
    Type: Application
    Filed: April 18, 2007
    Publication date: October 23, 2008
    Applicant: Micron Technology, Inc.
    Inventor: Dan B. Millward
  • Patent number: 7427300
    Abstract: This invention is directed to fabric finishes or treatment preparations for nylon, polyester, and other textile and fibrous substrate materials that will render them hydrophilic. The finishes of the invention are comprised primarily of polymers that contain carboxyl groups, salts of carboxyl groups, or moieties that can be converted to carboxyl groups by some chemical reaction.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: September 23, 2008
    Assignee: Nano-Tex, Inc.
    Inventors: David S. Soane, Dan B. Millward, Matthew R. Linford, Ryan Lau, Eric G. Green, William Ware, Jr.
  • Publication number: 20080217292
    Abstract: Methods for fabricating sublithographic, nanoscale linear microchannel arrays over surfaces without defined features utilizing self-assembling block copolymers, and films and devices formed from these methods are provided. Embodiments of the methods use a multilayer induced ordering approach to align lamellar films to an underlying base film within trenches, and localized heating to anneal the lamellar-phase block copolymer film overlying the trenches and outwardly over the remaining surface.
    Type: Application
    Filed: March 6, 2007
    Publication date: September 11, 2008
    Applicant: Micron Technology, Inc.
    Inventors: Dan B. Millward, Eugene P. Marsh
  • Publication number: 20080193658
    Abstract: Block copolymers can be self-assembled and used in methods as described herein for sub-lithographic patterning, for example. The block copolymers can be diblock copolymers, triblock copolymers, multiblock copolymers, or combinations thereof. Such methods can be useful for making devices that include, for example, sub-lithographic conductive lines.
    Type: Application
    Filed: February 8, 2007
    Publication date: August 14, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Dan B. Millward
  • Publication number: 20080176767
    Abstract: Methods for fabricating sublithographic, nanoscale microstructures in two-dimensional square and rectangular arrays utilizing self-assembling block copolymers, and films and devices formed from these methods are provided.
    Type: Application
    Filed: January 24, 2007
    Publication date: July 24, 2008
    Applicant: Micron Technology, Inc.
    Inventor: Dan B. Millward
  • Patent number: 7300873
    Abstract: A method of forming (and an apparatus for forming) a metal containing layer on a substrate, particularly a semiconductor substrate or substrate assembly for use in manufacturing a semiconductor or memory device structure, using one or more homoleptic and/or heteroleptic precursor compounds that include, for example, guanidinate, phosphoguanidinate, isoureate, thioisoureate, and/or selenoisoureate ligands using a vapor deposition process is provided.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: November 27, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Dan B. Millward
  • Publication number: 20040166753
    Abstract: This invention is directed towards fibers of fabric or other fibrous substrates coated with amine-containing polymers. These polymers impart durable anti-microbial activity, renewable control of certain odors, and the capacity to bind certain materials to the substrate surface.
    Type: Application
    Filed: December 9, 2003
    Publication date: August 26, 2004
    Inventors: Dan B. Millward, William Ware Jr
  • Publication number: 20040055093
    Abstract: The present invention is directed to a method for treating a synthetic, man-made or natural fiber substrate to create a permanently attached protein sheath around each fiber of the substrate. Such a treatment gives a composite substrate that exhibits the most desirable characteristics of the fiber core coupled with the most desirable characteristics of the protein sheath. It is also possible to apply this technology to individual synthetic fibers or yarns, if desired, before weaving, knitting, stitch-bonding or other method of woven or non-woven substrate formation.
    Type: Application
    Filed: July 21, 2003
    Publication date: March 25, 2004
    Applicant: Nano-Tex, LLC
    Inventors: David A. Offord, William Ware, Dan B. Millward, David S. Soane, Manfred A. Young
  • Publication number: 20040048541
    Abstract: The present invention is directed to a method for treating a synthetic, man-made, or natural fiber substrate to create a permanently attached carbohydrate sheath around the fibers of the substrate. Such a treatment gives a composite fibrous substrate that exhibits the most desirable characteristics of the fiber core coupled with the most desirable characteristics of the carbohydrate sheath. It is also possible to apply this technology to individual synthetic fibers or yarns, if desired, before weaving, knitting, stitch-bonding or other method of woven or non-woven substrate formation.
    Type: Application
    Filed: July 21, 2003
    Publication date: March 11, 2004
    Applicant: Nano-Tex, LLC
    Inventors: David A. Offord, William Ware, Dan B. Millward, David S. Soane, Manfred A. Young
  • Patent number: 6679924
    Abstract: This invention is directed to treatments for dyed textile goods that will improve their fastness properties. More particularly, the invention is directed to certain fixatives that, when placed on the dyed textile, allow the dye to be permanently or substantially permanently affixed to the fabric. The dye-reactive fixative comprises a water-soluble or water-dispersible polymer or oligomer having reactive groups that react with a dye on a dyed web to affix the dye to the web.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: January 20, 2004
    Assignee: Nano-Tex, LLC
    Inventors: William Ware, Jr., David S. Soane, Dan B. Millward, Matthew R. Linford
  • Patent number: 6607994
    Abstract: This invention is directed to preparations useful for the permanent or substantially permanent treatment of textiles and other webs. More particularly, the preparations of the invention comprise an agent or other payload surrounded by or contained within a polymeric encapsulator that is reactive to webs, to give textile-reactive nanoparticles. By “textile-reactive” is meant that the payload nanoparticle will form a chemical covalent bond with the fiber, yarn, fabric, textile, finished goods (including apparel), or other web or substrate to be treated. The polymeric encapsulator of the payload nanoparticle has a surface that includes functional groups for binding or attachment to the fibers of the textiles or other webs to be treated, to provide permanent attachment of the payload to the textiles. Alternatively, the surface of the nanoparticle includes functional groups that can bind to a linker molecule that will in turn bind or attach the nanoparticle to the fiber.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: August 19, 2003
    Assignee: Nano-Tex, LLC
    Inventors: David S. Soane, David A. Offord, Matthew R Linford, Dan B. Millward, William Ware, Jr., Lael Erskine, Eric Green, Ryan Lau
  • Publication number: 20030145397
    Abstract: This invention is directed to treatments for dyed textile goods that will improve their fastness properties. More particularly, the invention is directed to certain fixatives that, when placed on the dyed textile, allow the dye to be permanently or substantially permanently affixed to the fabric. The dye-reactive fixative comprises a water-soluble or water-dispersible polymer or oligomer having reactive groups that react with a dye on a dyed web to affix the dye to the web.
    Type: Application
    Filed: January 31, 2003
    Publication date: August 7, 2003
    Applicant: Nano-Tex, LLC
    Inventors: William Ware, David S. Soane, Dan B. Millward, Matthew R. Linford
  • Publication number: 20030101518
    Abstract: This invention is directed to fabric finishes or treatment preparations for nylon, polyester, and other textile and fibrous substrate materials that will render them hydrophilic. The finishes of the invention are comprised primarily of polymers that contain carboxyl groups, salts of carboxyl groups, or moieties that can be converted to carboxyl groups by some chemical reaction.
    Type: Application
    Filed: May 1, 2002
    Publication date: June 5, 2003
    Applicant: Nano-Tex, LLC
    Inventors: Matthew R. Linford, Ryan Lau, David S. Soane, Dan B. Millward, Eric G. Green, William Ware
  • Publication number: 20030099834
    Abstract: The present invention is directed to microemulsion techniques for rapidly preparing photochromic glass nanoparticles and to the photochromic glass nanoparticles so prepared. More particularly, the method of the invention comprises the combination of two microemulsions, one containing a water-soluble silver salt and a glass precursor and the other containing a halide salt and an initiator for glass formation, which process rapidly yields silver halide particles. This invention gives nanometer-sized silver halide particles embedded in glass, thus providing photochromic glass nanoparticles without further annealing, or at most mild annealing. These nanoparticles are valuable as added components to any macro-material that one might wish to have photochromic properties. The particles would impart photochromism while not affecting the physical properties of the material.
    Type: Application
    Filed: December 9, 2002
    Publication date: May 29, 2003
    Applicant: Nano-Tex, LLC
    Inventors: Lael L. Erskine, Dan B. Millward, David S. Soane
  • Patent number: 6517933
    Abstract: The invention is directed to a hybrid polymer material or system that combines naturally occurring building blocks with synthetic building blocks. The sets of naturally occurring and synthetic building blocks are mixed and joined on a molecular or nanoscopic level to give homogeneous or microphase-separated morphologies to the resulting mixed polymer system. These hybrid polymers combine the comfort attributes of natural materials with the robustness and design properties of synthetic materials.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: February 11, 2003
    Assignee: Nano-Tex, LLC
    Inventors: David S. Soane, Matthew R. Linford, David A. Offord, Dan B. Millward, William Ware, Jr.
  • Patent number: 6516633
    Abstract: The present invention is directed to microemulsion techniques for rapidly preparing photochromic glass nanoparticles and to the photochromic glass nanoparticles so prepared. More particularly, the method of the invention comprises the combination of two microemulsions, one containing a water-soluble silver salt and a glass precursor and the other containing a halide salt and an initiator for glass formation, which process rapidly yields silver halide particles. This invention gives nanometer-sized silver halide particles embedded in glass, thus providing photochromic glass nanoparticles without further annealing, or at most mild annealing. These nanoparticles are valuable as added components to any macro-material that one might wish to have photochromic properties. The particles would impart photochromism while not affecting the physical properties of the material.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: February 11, 2003
    Assignee: Nano-Tex, LLC
    Inventors: Lael L. Erskine, Dan B. Millward, David S. Soane
  • Publication number: 20030013369
    Abstract: This invention is directed to preparations useful for the permanent or substantially permanent treatment of textiles and other webs. More particularly, the preparations of the invention comprise an agent or other payload surrounded by or contained within a polymeric encapsulator that is reactive to webs, to give textile-reactive nanoparticles. By “textile-reactive” is meant that the payload nanoparticle will form a chemical covalent bond with the fiber, yarn, fabric, textile, finished goods (including apparel), or other web or substrate to be treated. The polymeric encapsulator of the payload nanoparticle has a surface that includes functional groups for binding or attachment to the fibers of the textiles or other webs to be treated, to provide permanent attachment of the payload to the textiles. Alternatively, the surface of the nanoparticle includes functional groups that can bind to a linker molecule that will in turn bind or attach the nanoparticle to the fiber.
    Type: Application
    Filed: December 6, 2000
    Publication date: January 16, 2003
    Inventors: David S. Soane, David A. Offord, Matthew R. Linford, Dan B, Millward, William Ware,, Lael Erskine, Eric Green, Ryan Lau