Patents by Inventor Dan Bocek

Dan Bocek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10337890
    Abstract: A single housing with a non-ferromagnetic piezo-driven flexure has primary and secondary coil forms of different diameters, one coaxially inside the other, integrated in the flexure. The cylinders defining the planes of the primary and secondaries do not spatially overlap. The secondary coil forms may be wound in opposite directions and wired to provide a transformer device. Movement of the primary relative to the secondaries in the direction of the central axis of the coils can be differentially detected with high precision.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: July 2, 2019
    Assignee: Oxford Instruments AFM Inc
    Inventors: Roger Carlos Proksch, Dan Bocek, Jason Cleveland, Matthew Longmire, Matthew Klonowski
  • Patent number: 10107832
    Abstract: A controller for cantilever-based instruments, including atomic force microscopes, molecular force probe instruments, high-resolution profilometers and chemical or biological sensing probes. The controller samples the output of the photo-detector commonly used to detect cantilever deflection in these instruments with a very fast analog/digital converter (ADC). The resulting digitized representation of the output signal is then processed with field programmable gate arrays and digital signal processors without making use of analog electronics. Analog signal processing is inherently noisy while digital calculations are inherently “perfect” in that they do not add any random noise to the measured signal. Processing by field programmable gate arrays and digital signal processors maximizes the flexibility of the controller because it can be varied through programming means, without modification of the controller hardware.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: October 23, 2018
    Assignee: Oxford Instruments PLC
    Inventors: Roger Proksch, Jason Cleveland, Dan Bocek, Todd Day, Mario Viani, Clint Callahan
  • Publication number: 20170292971
    Abstract: A controller for cantilever-based instruments, including atomic force microscopes, molecular force probe instruments, high-resolution profilometers and chemical or biological sensing probes. The controller samples the output of the photo-detector commonly used to detect cantilever deflection in these instruments with a very fast analog/digital converter (ADC). The resulting digitized representation of the output signal is then processed with field programmable gate arrays and digital signal processors without making use of analog electronics. Analog signal processing is inherently noisy while digital calculations are inherently “perfect” in that they do not add any random noise to the measured signal. Processing by field programmable gate arrays and digital signal processors maximizes the flexibility of the controller because it can be varied through programming means, without modification of the controller hardware.
    Type: Application
    Filed: June 26, 2017
    Publication date: October 12, 2017
    Inventors: Roger Proksch, Jason Cleveland, Dan Bocek, Todd Day, Mario Viani, Clint Callahan
  • Patent number: 9689890
    Abstract: A controller for cantilever-based instruments, including atomic force microscopes, molecular force probe instruments, high-resolution profilometers and chemical or biological sensing probes. The controller samples the output of the photo-detector commonly used to detect cantilever deflection in these instruments with a very fast analog/digital converter (ADC). The resulting digitized representation of the output signal is then processed with field programmable gate arrays and digital signal processors without making use of analog electronics. Analog signal processing is inherently noisy while digital calculations are inherently “perfect” in that they do not add any random noise to the measured signal. Processing by field programmable gate arrays and digital signal processors maximizes the flexibility of the controller because it can be varied through programming means, without modification of the controller hardware.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: June 27, 2017
    Assignees: Oxford Instruments PLC, Oxford Instruments AFM, Inc
    Inventors: Roger Proksch, Jason Cleveland, Dan Bocek, Todd Day, Mario Viani, Clint Callahan
  • Publication number: 20170089733
    Abstract: A single housing with a non-ferromagnetic piezo-driven flexure has primary and secondary coil forms of different diameters, one coaxially inside the other, integrated in the flexure. The cylinders defining the planes of the primary and secondaries do not spatially overlap. The secondary coil forms may be wound in opposite directions and wired to provide a transformer device. Movement of the primary relative to the secondaries in the direction of the central axis of the coils can be differentially detected with high precision.
    Type: Application
    Filed: December 13, 2016
    Publication date: March 30, 2017
    Inventors: Roger Carlos Proksch, Dan Bocek, Jason Cleveland, Matthew Longmire, Matthew Klonowski
  • Patent number: 9528859
    Abstract: Techniques for coupling with devices that convert displacements into differential voltages and improve the sensitivity of such devices. A transducer operates based on changes of inductances between primary and secondary of a transformer to produce a differential signal that includes a noninverted signal and an inverted signal. A switch receives the noninverted signal and the inverted signal. A processor creates a square wave signal for driving the transducer input, and also digitally creates an inverted transducer output. A filter operates to filter the square wave output from the processor to produce a substantially single frequency signal at a specified timing having a specified phase relationship relative to the first phase inversion signal based on instructions that are executed by the processor.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: December 27, 2016
    Assignees: Oxford Instruments AFM Inc, Oxford Instruments PLC
    Inventor: Dan Bocek
  • Patent number: 9518814
    Abstract: A single housing with a non-ferromagnetic piezo-driven flexure has primary and secondary coil forms of different diameters, one coaxially inside the other, integrated in the flexure. The cylinders defining the planes of the primary and secondaries do not spatially overlap. The secondary coil forms may be wound in opposite directions and wired to provide a transformer device. Movement of the primary relative to the secondaries in the direction of the central axis of the coils can be differentially detected with high precision.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: December 13, 2016
    Assignee: Oxford Instruments Asylum Research Inc
    Inventors: Roger Proksch, Dan Bocek, Jason Cleveland, Matthew Longmire, Matthew Klonowski
  • Publication number: 20150308862
    Abstract: Techniques for coupling with devices that convert displacements into differential voltages and improve the sensitivity of such devices. A transducer operates based on changes of inductances between primary and secondary of a transformer to produce a differential signal that includes a noninverted signal and an inverted signal. A switch receives the noninverted signal and the inverted signal. A processor creates a square wave signal for driving the transducer input, and also digitally creates an inverted transducer output. A filter operates to filter the square wave output from the processor to produce a substantially single frequency signal at a specified timing having a specified phase relationship relative to the first phase inversion signal based on instructions that are executed by the processor.
    Type: Application
    Filed: May 1, 2015
    Publication date: October 29, 2015
    Inventor: Dan Bocek
  • Patent number: 9024623
    Abstract: Techniques for coupling with devices that convert displacements into differential voltages and improvement of the sensitivity of such devices. A transducer operates based on changes of inductances between primary and secondary of a transformer to produce a differential signal that includes a noninverted signal and an inverted signal. A switch receives the noninverted signal and the inverted signal. A processor creates a square wave signal for driving the transducer input, and also digitally creates an inverted transducer output. A filter operates to filter the square wave output from the processor to produce a substantially single frequency signal at a specified timing having a specified phase relationship relative to the first phase inversion signal based on instructions that are executed by the processor.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: May 5, 2015
    Assignees: Oxford Instruments PLC, Oxford Instruments AFM, Inc
    Inventors: Dan Bocek, Roger Proksch
  • Publication number: 20150113687
    Abstract: A controller for cantilever-based instruments, including atomic force microscopes, molecular force probe instruments, high-resolution profilometers and chemical or biological sensing probes. The controller samples the output of the photo-detector commonly used to detect cantilever deflection in these instruments with a very fast analog/digital converter (ADC). The resulting digitized representation of the output signal is then processed with field programmable gate arrays and digital signal processors without making use of analog electronics. Analog signal processing is inherently noisy while digital calculations are inherently “perfect” in that they do not add any random noise to the measured signal. Processing by field programmable gate arrays and digital signal processors maximizes the flexibility of the controller because it can be varied through programming means, without modification of the controller hardware.
    Type: Application
    Filed: January 6, 2015
    Publication date: April 23, 2015
    Inventors: Roger Proksch, Jason Cleveland, Dan Bocek, Todd Day, Mario Viani, Clint Callahan
  • Patent number: 8925376
    Abstract: A controller for cantilever-based instruments, including atomic force microscopes, molecular force probe instruments, high-resolution profilometers and chemical or biological sensing probes. The controller samples the output of the photo-detector commonly used to detect cantilever deflection in these instruments with a very fast analog/digital converter (ADC). The resulting digitized representation of the output signal is then processed with field programmable gate arrays and digital signal processors without making use of analog electronics. Analog signal processing is inherently noisy while digital calculations are inherently “perfect” in that they do not add any random noise to the measured signal. Processing by field programmable gate arrays and digital signal processors maximizes the flexibility of the controller because it can be varied through programming means, without modification of the controller hardware.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: January 6, 2015
    Assignees: Oxford Instruments PLC, Oxford Instruments AFM, Inc
    Inventors: Roger Proksch, Jason Cleveland, Dan Bocek, Todd Day, Mario B. Viani, Clint Callahan
  • Publication number: 20130314078
    Abstract: A single housing with a non-ferromagnetic piezo-driven flexure has primary and secondary coil forms of different diameters, one coaxially inside the other, integrated in the flexure. The cylinders defining the planes of the primary and secondaries do not spatially overlap. The secondary coil forms may be wound in opposite directions and wired to provide a transformer device. Movement of the primary relative to the secondaries in the direction of the central axis of the coils can be differentially detected with high precision.
    Type: Application
    Filed: August 6, 2013
    Publication date: November 28, 2013
    Applicants: OXFORD INSTRUMENTS AFM INC, OXFORD INSTRUMENTS PLC
    Inventors: Roger Proksch, Dan Bocek, Jason Cleveland, Matthew Longmire, Matthew Klonowski
  • Patent number: 8502525
    Abstract: A single housing with a non-ferromagnetic piezo-driven flexure has primary and secondary coil forms of different diameters, one coaxially inside the other, integrated in the flexure. The cylinders defining the planes of the primary and secondaries do not spatially overlap. The secondary coil forms may be wound in opposite directions and wired to provide a transformer device. Movement of the primary relative to the secondaries in the direction of the central axis of the coils can be differentially detected with high precision.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: August 6, 2013
    Assignees: Oxford Instruments PLC, Oxford Instruments AFM, Inc
    Inventors: Roger Proksch, Dan Bocek, Jason Cleveland, Matthew Longmire, Matthew Klonowski
  • Patent number: 8459102
    Abstract: A digital system for controlling the quality factor in a resonant device. The resonant device can be a a device that includes a cantilever within its system, such as an atomic force microscope. The quality factor can be digitally controlled to avoid noise effect in the analog components. A direct digital synthesizer implemented in a way that provides access to the output of the phase accumulator. That output is a number which usually drives a lookup table to produce a cosine or sine output wave. The output wave is created, but the number is also adjusted to form a second number that drives a second lookup table to create an adjustment factor to adjust the output from the cosine table. The adjusted digital signal than drives a DA converter which produces an output drive for the cantilever.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: June 11, 2013
    Assignees: Oxford Instruments PLC, Oxford Instruments AFM Inc.
    Inventors: Dan Bocek, Jason Cleveland
  • Publication number: 20130024162
    Abstract: Techniques for coupling with devices that convert displacements into differential voltages and improve the sensitivity of such devices. The disclosed system improves the accuracy and resolution of a transducers such as an LVDT by converting certain parts of the circuit to a digital circuit. One embodiment uses a processor, although other digital processing circuitry may also be used.
    Type: Application
    Filed: September 18, 2012
    Publication date: January 24, 2013
    Applicant: ASYLUM RESEARCH CORPORATION
    Inventors: Dan Bocek, Roger Proksch
  • Publication number: 20120266336
    Abstract: A controller for cantilever-based instruments, including atomic force microscopes, molecular force probe instruments, high-resolution profilometers and chemical or biological sensing probes. The controller samples the output of the photo-detector commonly used to detect cantilever deflection in these instruments with a very fast analog/digital converter (ADC). The resulting digitized representation of the output signal is then processed with field programmable gate arrays and digital signal processors without making use of analog electronics. Analog signal processing is inherently noisy while digital calculations are inherently “perfect” in that they do not add any random noise to the measured signal. Processing by field programmable gate arrays and digital signal processors maximizes the flexibility of the controller because it can be varied through programming means, without modification of the controller hardware.
    Type: Application
    Filed: June 26, 2012
    Publication date: October 18, 2012
    Applicant: ASYLUM RESEARCH CORPORATION
    Inventors: Roger Proksch, Jason Cleveland, Dan Bocek, Todd Day, Mario B. Viani, Clint Callahan
  • Patent number: 8269485
    Abstract: Techniques for coupling with devices that convert displacements into differential voltages and improve the sensitivity of such devices. The disclosed system improves the accuracy and resolution of a transducers such as an LVDT by converting certain parts of the circuit to a digital circuit. One embodiment uses a processor, although other digital processing circuitry may also be used.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: September 18, 2012
    Assignee: Asylum Research Corporation
    Inventors: Dan Bocek, Roger Proksch
  • Publication number: 20120216322
    Abstract: A digital system for controlling the quality factor in a resonant device. The resonant device can be a a device that includes a cantilever within its system, such as an atomic force microscope. The quality factor can be digitally controlled to avoid noise effect in the analog components. A direct digital synthesizer implemented in a way that provides access to the output of the phase accumulator. That output is a number which usually drives a lookup table to produce a cosine or sine output wave. The output wave is created, but the number is also adjusted to form a second number that drives a second lookup table to create an adjustment factor to adjust the output from the cosine table. The adjusted digital signal than drives a DA converter which produces an output drive for the cantilever.
    Type: Application
    Filed: October 25, 2011
    Publication date: August 23, 2012
    Applicant: Asylum Research Corporation
    Inventors: Dan Bocek, Jason Cleveland
  • Patent number: 8205488
    Abstract: A controller for cantilever-based instruments, including atomic force microscopes, molecular force probe instruments, high-resolution profilometers and chemical or biological sensing probes. The controller samples the output of the photo-detector commonly used to detect cantilever deflection in these instruments with a very fast analog/digital converter (ADC). The resulting digitized representation of the output signal is then processed with field programmable gate arrays and digital signal processors without making use of analog electronics. Analog signal processing is inherently noisy while digital calculations are inherently “perfect” in that they do not add any random noise to the measured signal. Processing by field programmable gate arrays and digital signal processors maximizes the flexibility of the controller because it can be varied through programming means, without modification of the controller hardware.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: June 26, 2012
    Assignee: Asylum Research Corporation
    Inventors: Roger Proksch, Jason Cleveland, Dan Bocek, Todd Day, Mario B. Viani, Clint Callahan
  • Patent number: 8042383
    Abstract: A digital system for controlling the quality factor in a resonant device. The resonant device can be any mechanically driven resonant device, but more particularly can be a device that includes a cantilever within its system, such as an atomic force microscope. The quality factor can be digitally controlled to avoid noise effect in the analog components. One of the controls can use a direct digital synthesizer implemented in a way that provides access to the output of the phase accumulator. That output is a number which usually drives eight lookup table to produce a cosine or sign output wave. The output wave is created, but the number is also adjusted to form a second number of the drives a second lookup table to create an adjustment factor. The adjustment factor is used to adjusts the output from the cosine table, to create an adjusted digital signal. The adjusted digital signal than drives a DA converter which produces an output drive for the cantilever.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: October 25, 2011
    Assignee: Asylum Research Corporation
    Inventors: Dan Bocek, Jason Cleveland