Patents by Inventor Dan M. Hartsough

Dan M. Hartsough has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6541228
    Abstract: A process for purifying and concentrating a gluconic acid derivative, such as 2-keto-L-gulonic acid, comprising introducing a non-viable and/or acidified fermentation medium or an in-vitro reactor medium comprising at least the gluconic acid derivative and/or salt thereof to electrodialysis thereby purifying and concentrating the gluconic acid derivative.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: April 1, 2003
    Assignee: The Electrosynthesis Company, Inc.
    Inventors: J. David Genders, Ram Gopal, Dan M. Hartsough, Peter M. Kendall, William J. Long, Duane J. Mazur, Guillermo D. Zappi
  • Patent number: 6495013
    Abstract: Bipolar membrane electrodialysis methods for salt splitting polyvalent metal salts, where the metal cation can form substantially insoluble precipitates in the presence of hydroxyl ions can now be used in recovering acid and base values from a salt streams without precipitates fouling cell operation and causing shutdown. The introduction of an acid to the chamber where metal hydroxides would form inhibits their development or neutralizes formed solids, allowing salt splitting to continue. Salt splitting methods of the invention performed with a three compartment bipolar electrodialysis cell are useful in producing concentrated and purified acid forms, such as 2-keto-L-gluconic acid, H(KLG), a key intermediate in the production of ascorbic acid.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: December 17, 2002
    Assignee: The Electrosynthesis Company, Inc.
    Inventors: Duane J. Mazur, J. David Genders, Dan M. Hartsough
  • Publication number: 20020005356
    Abstract: Bipolar membrane electrodialysis methods for salt splitting polyvalent metal salts, where the metal cation can form substantially insoluble precipitates in the presence of hydroxyl ions can now be used in recovering acid and base values from a salt streams without precipitates fouling cell operation and causing shutdown. The introduction of an acid to the chamber where metal hydroxides would form inhibits their development or neutralizes formed solids, allowing salt splitting to continue. Salt splitting methods of the invention performed with a three compartment bipolar electrodialysis cell are useful in producing concentrated and purified acid forms, such as 2-keto-L-gluconic acid, H(KLG), a key intermediate in the production of ascorbic acid.
    Type: Application
    Filed: July 9, 2001
    Publication date: January 17, 2002
    Inventors: Duane J. Mazur, J. David Genders, Dan M. Hartsough
  • Patent number: 6187570
    Abstract: A process for purifying and concentrating a gluconic acid derivative, such as 2-keto-L-gulonic acid, comprising introducing a non-viable and/or acidified fermentation medium or an in-vitro reactor medium comprising at least the gluconic acid derivative and/or salt thereof to electrodialysis thereby purifying and concentrating the gluconic acid derivative.
    Type: Grant
    Filed: May 25, 1999
    Date of Patent: February 13, 2001
    Assignee: The Electrosynthesis Company, Inc.
    Inventors: J. David Genders, Ram Gopal, Dan M. Hartsough, Peter M. Kendall, William J. Long, Duane J. Mazur, Guillermo D. Zappi
  • Patent number: 6004445
    Abstract: The present invention relates to electrochemical methods for the recovery of ascorbic acid from an ascorbate salt without the co-generation of a waste salt stream and while maintaining high conductivity of the electrochemical cell thereby providing for quantitative conversion of the salts to ascorbic in both batch and continuous mode processes. In one embodiment the feed stream comprising an ascorbate salt is dissociated under the influence of an electric field and subjected to water splitting electrodialysis. The ascorbate ion combines with a proton and the salt cation combines with a hydroxyl ion to form ascorbic acid and base, respectively. The feed stream further comprises an inorganic salt which maintains high conductivity in the cell, facilitates quantitative conversion of ascorbate salts to ascorbic acid in both batch and continuous mode processes, and promotes precipitation and crystallization of ascorbic acid as a fine powder.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: December 21, 1999
    Assignee: Electrosynthesis Company, Inc.
    Inventors: J. David Genders, Dan M. Hartsough
  • Patent number: 5520793
    Abstract: Improved electrochemical processes for producing high purity grades of hydrogen iodide without developing cell fouling iodine solids through oxidation of iodide at the anode back migrating through ion exchange membrane into anolyte compartment. Two and three compartment electrochemical cells have anolyte solutions with chemical agents for oxidizing back migrating iodides to soluble iodine species to avoid build up of iodine solids on key cell components. Other embodiments include processes with undivided electrochemical cells fitted with hydrogen depolarized anodes, optionally operating electrogeneratively producing at least some of its own power requirements while simultaneously producing HI, or processes of making high purity HI with multi-phase aqueous/non-aqueous anolytes for solubilizing iodine solids as they develop in the anolyte compartment.
    Type: Grant
    Filed: April 3, 1995
    Date of Patent: May 28, 1996
    Assignee: Benham Electrosynthesis Company, Inc.
    Inventors: J. David Genders, Norman L. Weinberg, Dan M. Hartsough