Patents by Inventor Dan Morris

Dan Morris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11847593
    Abstract: A system and method are disclosed for determining long-range staff planning. Embodiments include determining a baseline measurement of labor needs over a time period of one or more employees at one or more entities and modifying the baseline measurement of the labor needs over the time period based on one or more constraints that allow the one or more employees to work additional types of labor needs at the one or more entities. Embodiments further include determining working times and job assignments of the one or more employees based on one or more simulated employees that represent potential employees to the modified baseline measurement of the labor needs over the time period and storing the determined working times and job assignments in the database for the one or more employees at the one or more entities.
    Type: Grant
    Filed: February 27, 2023
    Date of Patent: December 19, 2023
    Assignee: Blue Yonder Group, Inc.
    Inventors: Jon Edward Sager, Dan Morris, Alun Jones
  • Publication number: 20230206148
    Abstract: A system and method are disclosed for determining long-range staff planning. Embodiments include determining a baseline measurement of labor needs over a time period of one or more employees at one or more entities and modifying the baseline measurement of the labor needs over the time period based on one or more constraints that allow the one or more employees to work additional types of labor needs at the one or more entities. Embodiments further include determining working times and job assignments of the one or more employees based on one or more simulated employees that represent potential employees to the modified baseline measurement of the labor needs over the time period and storing the determined working times and job assignments in the database for the one or more employees at the one or more entities.
    Type: Application
    Filed: February 27, 2023
    Publication date: June 29, 2023
    Inventors: Jon Edward Sager, Dan Morris, Alun Jones
  • Patent number: 11610163
    Abstract: A system and method are disclosed for determining long-range staff planning. Embodiments include determining a baseline measurement of labor needs over a time period of one or more employees at one or more entities and modifying the baseline measurement of the labor needs over the time period based on one or more constraints that allow the one or more employees to work additional types of labor needs at the one or more entities. Embodiments further include determining working times and job assignments of the one or more employees based on one or more simulated employees that represent potential employees to the modified baseline measurement of the labor needs over the time period and storing the determined working times and job assignments in the database for the one or more employees at the one or more entities.
    Type: Grant
    Filed: May 30, 2022
    Date of Patent: March 21, 2023
    Assignee: Blue Yonder Group, Inc.
    Inventors: Jon Edward Sager, Dan Morris, Alun Jones
  • Patent number: 11552422
    Abstract: A bulkhead passthrough connector containing a printed circuit board (PCB) for transferring electrical signals across a bulkhead to an electronic valve actuator, an electronic valve actuator configured to operate and communicate with a valve using a PCB through a bulkhead, the electronic valve actuator, and a method of assembling a bulkhead passthrough connector incorporating a PCB. The embodiments may include a passthrough partition which separates one side of the bulkhead from another. A PCB retainer may also be secured to the passthrough partition. The PCB is attached to the PCB retainer and extends from one side to another side of the bulkhead through the passthrough partition. The PCB further includes electrical paths printed on the PCB and electrical connectors located on both sides of the bulkhead to enable communication with external devices.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: January 10, 2023
    Assignee: FLOWSERVE MANAGEMENT COMPANY
    Inventors: Michael Gorbutt, William Hooss, Dan Morris
  • Publication number: 20220292433
    Abstract: A system and method are disclosed for determining long-range staff planning. Embodiments include determining a baseline measurement of labor needs over a time period of one or more employees at one or more entities and modifying the baseline measurement of the labor needs over the time period based on one or more constraints that allow the one or more employees to work additional types of labor needs at the one or more entities. Embodiments further include determining working times and job assignments of the one or more employees based on one or more simulated employees that represent potential employees to the modified baseline measurement of the labor needs over the time period and storing the determined working times and job assignments in the database for the one or more employees at the one or more entities.
    Type: Application
    Filed: May 30, 2022
    Publication date: September 15, 2022
    Inventors: Jon Edward Sager, Dan Morris, Alun Jones
  • Patent number: 11344214
    Abstract: Wearable pulse pressure wave sensing devices are presented that generally provide a non-intrusive way to measure a pulse pressure wave travelling through an artery using a wearable device. In one implementation, the device includes an array of pressure sensors disposed on a mounting structure which is attachable to a user on an area proximate to an underlying artery. Each of the pressure sensors is capable of being mechanically coupled to the skin of the user proximate to the underlying artery. In addition, there are one or more arterial location sensors disposed on the mounting structure which identify a location on the user's skin likely overlying the artery. A pulse pressure wave is then measured using the pressure sensor of the array closest to the identified location.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: May 31, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: T. Scott Saponas, Dan Morris, Nicolas Villar, Shwetak Patel, Greg R. Smith, Desney Tan, Orestis Vardoulis, Sidhant Gupta
  • Patent number: 11348046
    Abstract: A system and method are disclosed for determining long-range staff planning. Embodiments include determining a baseline measurement of labor needs over a time period of one or more employees at one or more entities and modifying the baseline measurement of the labor needs over the time period based on one or more constraints that allow the one or more employees to work additional types of labor needs at the one or more entities. Embodiments further include determining working times and job assignments of the one or more employees based on one or more simulated employees that represent potential employees to the modified baseline measurement of the labor needs over the time period and storing the determined working times and job assignments in the database for the one or more employees at the one or more entities.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: May 31, 2022
    Assignee: Blue Yonder Group, Inc.
    Inventors: Jon Edward Sager, Dan Morris, Alun Jones
  • Publication number: 20210296811
    Abstract: A bulkhead passthrough connector containing a printed circuit board (PCB) for transferring electrical signals across a bulkhead to an electronic valve actuator, an electronic valve actuator configured to operate and communicate with a valve using a PCB through a bulkhead, the electronic valve actuator, and a method of assembling a bulkhead passthrough connector incorporating a PCB. The embodiments may include a passthrough partition which separates one side of the bulkhead from another. A PCB retainer may also be secured to the passthrough partition. The PCB is attached to the PCB retainer and extends from one side to another side of the bulkhead through the passthrough partition. The PCB further includes electrical paths printed on the PCB and electrical connectors located on both sides of the bulkhead to enable communication with external devices.
    Type: Application
    Filed: June 9, 2021
    Publication date: September 23, 2021
    Inventors: Michael Gorbutt, William Hooss, Dan Morris
  • Patent number: 11063382
    Abstract: A bulkhead passthrough connector containing a printed circuit board (PCB) for transferring electrical signals across a bulkhead to an electronic valve actuator, an electronic valve actuator configured to operate and communicate with a valve using a PCB through a bulkhead, the electronic valve actuator, and a method of assembling a bulkhead passthrough connector incorporating a PCB. The embodiments may include a passthrough partition which separates one side of the bulkhead from another. A PCB retainer may also be secured to the passthrough partition. The PCB is attached to the PCB retainer and extends from one side to another side of the bulkhead through the passthrough partition. The PCB further includes electrical paths printed on the PCB and electrical connectors located on both sides of the bulkhead to enable communication with external devices.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: July 13, 2021
    Assignee: Flowserve Management Company
    Inventors: Michael Gorbutt, William Hooss, Dan Morris
  • Publication number: 20200394596
    Abstract: A system and method are disclosed for determining long-range staff planning. Embodiments include determining a baseline measurement of labor needs over a time period of one or more employees at one or more entities and modifying the baseline measurement of the labor needs over the time period based on one or more constraints that allow the one or more employees to work additional types of labor needs at the one or more entities. Embodiments further include determining working times and job assignments of the one or more employees based on one or more simulated employees that represent potential employees to the modified baseline measurement of the labor needs over the time period and storing the determined working times and job assignments in the database for the one or more employees at the one or more entities.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 17, 2020
    Inventors: Jon Edward Sager, Dan Morris, Alun Jones
  • Publication number: 20200329987
    Abstract: Wearable pulse pressure wave sensing devices are presented that generally provide a non-intrusive way to measure a pulse pressure wave travelling through an artery using a wearable device. In one implementation, the device includes an array of pressure sensors disposed on a mounting structure which is attachable to a user on an area proximate to an underlying artery. Each of the pressure sensors is capable of being mechanically coupled to the skin of the user proximate to the underlying artery. In addition, there are one or more arterial location sensors disposed on the mounting structure which identify a location on the user's skin likely overlying the artery. A pulse pressure wave is then measured using the pressure sensor of the array closest to the identified location.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 22, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: T. Scott Saponas, Dan Morris, Nicolas Villar, Shwetak Patel, Greg R. Smith, Desney Tan, Orestis Vardoulis, Sidhant Gupta
  • Patent number: 10762455
    Abstract: A system and method are disclosed for determining long-range staff planning. Embodiments include determining a baseline measurement of labor needs over a time period of one or more employees at one or more entities and modifying the baseline measurement of the labor needs over the time period based on one or more constraints that allow the one or more employees to work additional types of labor needs at the one or more entities. Embodiments further include determining working times and job assignments of the one or more employees based on one or more simulated employees that represent potential employees to the modified baseline measurement of the labor needs over the time period and storing the determined working times and job assignments in the database for the one or more employees at the one or more entities.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: September 1, 2020
    Assignee: Blue Yonder Group, Inc.
    Inventors: Jon Edward Sager, Dan Morris, Alun Jones
  • Patent number: 10694960
    Abstract: Wearable pulse pressure wave sensing devices are presented that generally provide a non-intrusive way to measure a pulse pressure wave travelling through an artery using a wearable device. In one implementation, the device includes an array of pressure sensors disposed on a mounting structure which is attachable to a user on an area proximate to an underlying artery. Each of the pressure sensors is capable of being mechanically coupled to the skin of the user proximate to the underlying artery. In addition, there are one or more arterial location sensors disposed on the mounting structure which identify a location on the user's skin likely overlying the artery. A pulse pressure wave is then measured using the pressure sensor of the array closest to the identified location.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: June 30, 2020
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: T. Scott Saponas, Dan Morris, Nicolas Villar, Shwetak Patel, Greg R. Smith, Desney Tan, Orestis Vardoulis, Sidhant Gupta
  • Publication number: 20190363475
    Abstract: A bulkhead passthrough connector containing a printed circuit board (PCB) for transferring electrical signals across a bulkhead to an electronic valve actuator, an electronic valve actuator configured to operate and communicate with a valve using a PCB through a bulkhead, the electronic valve actuator, and a method of assembling a bulkhead passthrough connector incorporating a PCB. The embodiments may include a passthrough partition which separates one side of the bulkhead from another. A PCB retainer may also be secured to the passthrough partition. The PCB is attached to the PCB retainer and extends from one side to another side of the bulkhead through the passthrough partition. The PCB further includes electrical paths printed on the PCB and electrical connectors located on both sides of the bulkhead to enable communication with external devices.
    Type: Application
    Filed: May 22, 2018
    Publication date: November 28, 2019
    Inventors: Michael Gorbutt, William Hooss, Dan Morris
  • Patent number: 9848825
    Abstract: A wearable sensing band is presented that generally provides a non-intrusive way to measure a person's cardiovascular vital signs including pulse transit time and pulse wave velocity. The band includes a strap with one or more primary electrocardiography (ECG) electrodes which are in contact with a first portion of the user's body, one or more secondary ECG electrodes, and one or more pulse pressure wave arrival (PPWA) sensors. The primary and secondary ECG electrodes detect an ECG signal whenever the secondary ECG electrodes make electrical contact with the second portion of the user's body, and the PPWA sensors sense an arrival of a pulse pressure wave to the first portion of the user's body from the user's heart. The ECG signal and PPWA sensor(s) readings are used to compute at least one of a pulse transit time (PTT) or a pulse wave velocity (PWV) of the user.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: December 26, 2017
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Dan Morris, T. Scott Saponas, Nicolas Villar, Shwetak Patel, Greg R. Smith, Desney Tan
  • Publication number: 20160089033
    Abstract: The cardiovascular vital signs of a user are measured. One or more user activity metrics is received from one or more user activity sensors. A type of activity the user is currently engaged in is inferred from the received user activity metrics. Additional context that is associated with the inferred type of activity may also be identified. A determination is made as to if it is time to measure the cardiovascular vital signs of the user, where this determination is based on the inferred type of activity and may also be based on the identified additional context. Whenever it is determined to be time to measure the cardiovascular vital signs of the user, this measurement is made.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventors: T. Scott Saponas, Dan Morris, Nicolas Villar, Shwetak Patel, Greg R. Smith, Desney Tan
  • Publication number: 20160089081
    Abstract: A wearable sensing band is presented that generally provides a non-intrusive way to measure a person's cardiovascular vital signs including pulse transit time and pulse wave velocity. The band includes a strap with one or more primary electrocardiography (ECG) electrodes which are in contact with a first portion of the user's body, one or more secondary ECG electrodes, and one or more pulse pressure wave arrival (PPWA) sensors. The primary and secondary ECG electrodes detect an ECG signal whenever the secondary ECG electrodes make electrical contact with the second portion of the user's body, and the PPWA sensors sense an arrival of a pulse pressure wave to the first portion of the user's body from the user's heart. The ECG signal and PPWA sensor(s) readings are used to compute at least one of a pulse transit time (PTT) or a pulse wave velocity (PWV) of the user.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventors: Dan Morris, T. Scott Saponas, Nicolas Villar, Shwetak Patel, Greg R. Smith, Desney Tan
  • Publication number: 20160089042
    Abstract: Wearable pulse pressure wave sensing devices are presented that generally provide a non-intrusive way to measure a pulse pressure wave travelling through an artery using a wearable device. In one implementation, the device includes an array of pressure sensors disposed on a mounting structure which is attachable to a user on an area proximate to an underlying artery. Each of the pressure sensors is capable of being mechanically coupled to the skin of the user proximate to the underlying artery. In addition, there are one or more arterial location sensors disposed on the mounting structure which identify a location on the user's skin likely overlying the artery. A pulse pressure wave is then measured using the pressure sensor of the array closest to the identified location.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventors: T. Scott Saponas, Dan Morris, Nicolas Villar, Shwetak Patel, Greg R. Smith, Desney Tan, Orestis Vardoulis, Sidhant Gupta
  • Publication number: 20150266616
    Abstract: There is a stacked shipping container assembly having a bottom shipping container including a plurality of corner blocks at top corners thereof. The stacked shipping container assembly includes a top shipping container having a plurality of corner blocks at bottom corners thereof. The top shipping container is stacked on the bottom shipping container wherein at least two of the corner blocks of each of the bottom shipping container and the top shipping container are aligned horizontally with each other. The stacked shipping container assembly includes a pair of stacking cones each disposed between horizontally aligned pairs of corner blocks. The assembly includes a pair of toroidal weld plates each disposed around a corresponding stacking cone and between horizontally aligned pairs of corner blocks.
    Type: Application
    Filed: March 19, 2014
    Publication date: September 24, 2015
    Inventors: Ross Barrable, Dan Morris
  • Patent number: 9037530
    Abstract: A “Wearable Electromyography-Based Controller” includes a plurality of Electromyography (EMG) sensors and provides a wired or wireless human-computer interface (HCI) for interacting with computing systems and attached devices via electrical signals generated by specific movement of the user's muscles. Following initial automated self-calibration and positional localization processes, measurement and interpretation of muscle generated electrical signals is accomplished by sampling signals from the EMG sensors of the Wearable Electromyography-Based Controller. In operation, the Wearable Electromyography-Based Controller is donned by the user and placed into a coarsely approximate position on the surface of the user's skin. Automated cues or instructions are then provided to the user for fine-tuning placement of the Wearable Electromyography-Based Controller.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: May 19, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Desney Tan, T. Scott Saponas, Dan Morris, Jim Turner