Patents by Inventor Dan Namishia

Dan Namishia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240105763
    Abstract: A device according to some embodiments includes a metal-insulator-metal (MIM) capacitor including a substrate, an upper metal plate, and a lower metal surface attached to a first surface of the substrate. The upper metal plate of the MIM capacitor is configured to serve as a wire bonding surface. Other embodiments include an RF transistor package and a device including a MIM capacitor that includes at least one via.
    Type: Application
    Filed: September 25, 2022
    Publication date: March 28, 2024
    Inventors: Jeremy Fisher, Marvin Marbell, Dan Namishia, Dan Etter
  • Publication number: 20240072732
    Abstract: A transistor die includes a transistor including a control terminal, an output terminal, and a first partial matching circuit. The first partial matching circuit is connected to at least one of the control terminal of the transistor and the output terminal of the transistor, and is configured to tune an input impedance of the transistor die. A packaged device is also provided.
    Type: Application
    Filed: August 31, 2022
    Publication date: February 29, 2024
    Inventors: Donald Farrell, Dan Namishia, Kyle Bothe, Brad Millon
  • Publication number: 20230291367
    Abstract: Semiconductor devices are provided that include a Group III nitride-based semiconductor layer structure. A first metal layer is formed on an upper surface of the semiconductor layer structure, a first dielectric layer is formed on an upper surface of the first metal layer, and a second metal layer is formed on an upper surface of the first dielectric layer. The first metal layer, the first dielectric layer and the second metal layer form a first capacitor. A second dielectric layer is formed on an upper surface of the second metal layer, a third dielectric layer is formed on an upper surface of the second dielectric layer, and a third metal layer is formed on upper surfaces of the second and third dielectric layers. The second metal layer, the second dielectric layer and the third metal layer form a second capacitor that is stacked on the first capacitor.
    Type: Application
    Filed: March 8, 2022
    Publication date: September 14, 2023
    Inventors: Jeremy Fisher, Dan Namishia, Scott Sheppard
  • Publication number: 20230215833
    Abstract: A semiconductor chip comprises a substrate, a die attach material, and a die. The substrate comprises an upper surface and a lower surface opposing the upper surface. The die attach material is on the upper surface of the substrate. The die comprises a bottom surface bonded to the upper surface of the substrate by the die attach material, a top surface opposing the bottom surface, and a side wall adjacent to the top surface and the bottom surface. A shortest distance across an exterior of the side wall from the bottom surface to the top surface defines an exterior surface distance. The die further comprises a die height measured from where the side wall meets the bottom surface to where the side wall meets the top surface. The exterior surface distance is longer than the die height.
    Type: Application
    Filed: January 3, 2022
    Publication date: July 6, 2023
    Inventors: Dan Namishia, Mitch Flowers, Eng Wah Woo, Erwin Cohen
  • Publication number: 20230197587
    Abstract: A transistor device includes a metal submount; a transistor die arranged on said metal submount; at least one integrated passive device (IPD) component that includes a substrate arranged on said metal submount; and one or more interconnects extending between the transistor die and the at least one integrated passive device (IPD) component. The substrate includes a silicon carbide (SiC) substrate.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Inventors: Donald FARRELL, Marvin MARBELL, Jeremy FISHER, Dan NAMISHIA, Scott SHEPPARD, Dan ETTER
  • Patent number: 11682634
    Abstract: A packaged electronic circuit includes a substrate having an upper surface, a first metal layer on the upper surface of the substrate, a first polymer layer on the first metal layer opposite the substrate, a second metal layer on the first polymer layer opposite the first metal layer, a dielectric layer on the first polymer layer and at least a portion of the second metal layer and a second polymer layer on the dielectric layer.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: June 20, 2023
    Assignee: Wolfspeed, Inc.
    Inventors: Kyle Bothe, Dan Namishia, Fabian Radulescu, Scott Sheppard
  • Patent number: 11658234
    Abstract: A transistor device includes a semiconductor epitaxial layer structure including a channel layer and a barrier layer on the channel layer, a source contact and a drain contact on the barrier layer, an insulating layer on the semiconductor layer between the source contact and the drain contact, and a gate contact on the insulating layer. The gate contact includes a central portion that extends through the insulating layer and contacts the barrier layer and a drain side wing that extends laterally from the central portion of the gate toward the drain contact by a distance ?D. The drain side wing of the gate contact is spaced apart from the barrier layer by a distance d1 that is equal to a thickness of the insulating layer. The distance ?D is less than about 0.3 ?m, and the distance d1 is less than about 80 nm.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: May 23, 2023
    Assignee: Wolfspeed, Inc.
    Inventors: Kyle Bothe, Terry Alcorn, Dan Namishia, Jia Guo, Matt King, Saptharishi Sriram, Jeremy Fisher, Fabian Radulescu, Scott Sheppard, Yueying Liu
  • Patent number: 11616136
    Abstract: A power amplifier comprising a GaN-based high electron mobility transistor (HEMT) device, wherein a power added efficiency (PAE) of the power amplifier is greater than 32% at P1DB during operation of the power amplifier between 26.5 GHz and 30.5 GHz.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: March 28, 2023
    Assignee: Wolfspeed, Inc.
    Inventors: Kyle Bothe, Evan Jones, Dan Namishia, Chris Hardiman, Fabian Radulescu, Terry Alcorn, Scott Sheppard, Bruce Schmukler
  • Publication number: 20220130985
    Abstract: A transistor device includes a semiconductor epitaxial layer structure including a channel layer and a barrier layer on the channel layer, a source contact and a drain contact on the barrier layer, an insulating layer on the semiconductor layer between the source contact and the drain contact, and a gate contact on the insulating layer. The gate contact includes a central portion that extends through the insulating layer and contacts the barrier layer and a drain side wing that extends laterally from the central portion of the gate toward the drain contact by a distance ?D. The drain side wing of the gate contact is spaced apart from the barrier layer by a distance d1 that is equal to a thickness of the insulating layer. The distance ?D is less than about 0.3 ?m, and the distance d1 is less than about 80 nm.
    Type: Application
    Filed: May 20, 2021
    Publication date: April 28, 2022
    Inventors: Kyle Bothe, Terry Alcorn, Dan Namishia, Jia Guo, Matt King, Saptharishi Sriram, Jeremy Fisher, Fabian Radulescu, Scott Sheppard, Yueying Liu
  • Publication number: 20210359118
    Abstract: A high-electron mobility transistor (HEMT) that includes a substrate, a group III-Nitride channel layer on the substrate, a group III-Nitride barrier layer on the group III-Nitride channel layer, the group III-Nitride barrier layer that includes a higher bandgap than a bandgap of the group III-Nitride channel layer, a source electrically coupled to the group III-Nitride barrier layer, a gate electrically coupled to the group III-Nitride barrier layer, and a drain electrically coupled to the group III-Nitride barrier layer. The source and/or the drain are structured and arranged to extend through the group III-Nitride barrier layer into the group III-Nitride channel layer.
    Type: Application
    Filed: May 18, 2020
    Publication date: November 18, 2021
    Inventors: Fabian Radulescu, Scott Sheppard, Dan Namishia, Chris Hardiman, Terry Alcorn, Kyle Bothe, Jennifer Gao
  • Publication number: 20210175351
    Abstract: A power amplifier comprising a GaN-based high electron mobility transistor (HEMT) device, wherein a power added efficiency (PAE) of the power amplifier is greater than 32% at P1DB during operation of the power amplifier between 26.5 GHz and 30.5 GHz.
    Type: Application
    Filed: February 19, 2021
    Publication date: June 10, 2021
    Inventors: Kyle Bothe, Evan Jones, Dan Namishia, Chris Hardiman, Fabian Radulescu, Terry Alcorn, Scott Sheppard, Bruce Schmukler
  • Patent number: 10971612
    Abstract: A power amplifier comprising a GaN-based high electron mobility transistor (HEMT) device, wherein a power added efficiency (PAE) of the power amplifier is greater than 32% at P1DB during operation of the power amplifier between 26.5 GHz and 30.5 GHz.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: April 6, 2021
    Assignee: Cree, Inc.
    Inventors: Kyle Bothe, Evan Jones, Dan Namishia, Chris Hardiman, Fabian Radulescu, Terry Alcorn, Scott Sheppard, Bruce Schmukler
  • Patent number: 10923585
    Abstract: A high electron mobility transistor (HEMT) includes a substrate comprising a first surface and a second surface on opposing sides of the substrate, a channel layer on the first surface of the substrate opposite the substrate, a barrier layer on the channel layer, a source contact comprising a first ohmic contact on an upper surface of the barrier layer, and a via extending from the second surface of the substrate to the first ohmic contact.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: February 16, 2021
    Assignee: Cree, Inc.
    Inventors: Kyle Bothe, Evan Jones, Dan Namishia, Chris Hardiman, Fabian Radulescu, Jeremy Fisher, Scott Sheppard
  • Publication number: 20210028127
    Abstract: A packaged electronic circuit includes a substrate having an upper surface, a first metal layer on the upper surface of the substrate, a first polymer layer on the first metal layer opposite the substrate, a second metal layer on the first polymer layer opposite the first metal layer, a dielectric layer on the first polymer layer and at least a portion of the second metal layer and a second polymer layer on the dielectric layer.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 28, 2021
    Inventors: Kyle Bothe, Dan Namishia, Fabian Radulescu, Scott Sheppard
  • Publication number: 20200395475
    Abstract: A power amplifier comprising a GaN-based high electron mobility transistor (HEMT) device, wherein a power added efficiency (PAE) of the power amplifier is greater than 32% at P1 DB during operation of the power amplifier between 26.5 GHz and 30.5 GHz.
    Type: Application
    Filed: August 29, 2019
    Publication date: December 17, 2020
    Inventors: Kyle Bothe, Evan Jones, Dan Namishia, Chris Hardiman, Fabian Radulescu, Terry Alcorn, Scott Sheppard, Bruce Schmukler
  • Publication number: 20200395474
    Abstract: A high electron mobility transistor (HEMT) includes a substrate comprising a first surface and a second surface on opposing sides of the substrate, a channel layer on the first surface of the substrate opposite the substrate, a barrier layer on the channel layer, a source contact comprising a first ohmic contact on an upper surface of the barrier layer, and a via extending from the second surface of the substrate to the first ohmic contact.
    Type: Application
    Filed: June 13, 2019
    Publication date: December 17, 2020
    Inventors: Kyle Bothe, Evan Jones, Dan Namishia, Chris Hardiman, Fabian Radulescu, Jeremy Fisher, Scott Sheppard
  • Patent number: 10811370
    Abstract: A packaged electronic circuit includes a substrate having an upper surface, a first metal layer on the upper surface of the substrate, a first polymer layer on the first metal layer opposite the substrate, a second metal layer on the first polymer layer opposite the first metal layer, a dielectric layer on the first polymer layer and at least a portion of the second metal layer and a second polymer layer on the dielectric layer.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: October 20, 2020
    Assignee: Cree, Inc.
    Inventors: Kyle Bothe, Dan Namishia, Fabian Radulescu, Scott Sheppard
  • Publication number: 20190326230
    Abstract: A packaged electronic circuit includes a substrate having an upper surface, a first metal layer on the upper surface of the substrate, a first polymer layer on the first metal layer opposite the substrate, a second metal layer on the first polymer layer opposite the first metal layer, a dielectric layer on the first polymer layer and at least a portion of the second metal layer and a second polymer layer on the dielectric layer.
    Type: Application
    Filed: April 24, 2018
    Publication date: October 24, 2019
    Inventors: Kyle Bothe, Dan Namishia, Fabian Radulescu, Scott Sheppard
  • Patent number: 9786660
    Abstract: A transistor device includes a source contact extending in a first direction, a gate finger extending in the first direction adjacent the source contact, and a drain contact adjacent the gate finger, wherein the gate finger is between the drain contact and the source contact. The device further includes a gate jumper extending in the first direction, a gate bus connected to the gate jumper and the gate finger, and a gate signal distribution bar that is spaced apart from the gate bus in the first direction and that connects the gate jumper to the gate finger.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: October 10, 2017
    Assignee: Cree, Inc.
    Inventors: Donald Farrell, Simon Wood, Scott Sheppard, Dan Namishia
  • Publication number: 20170271329
    Abstract: A transistor device includes a source contact extending in a first direction, a gate finger extending in the first direction adjacent the source contact, and a drain contact adjacent the gate finger, wherein the gate finger is between the drain contact and the source contact. The device further includes a gate jumper extending in the first direction, a gate bus connected to the gate jumper and the gate finger, and a gate signal distribution bar that is spaced apart from the gate bus in the first direction and that connects the gate jumper to the gate finger.
    Type: Application
    Filed: March 17, 2016
    Publication date: September 21, 2017
    Inventors: Donald Farrell, Simon Wood, Scott Sheppard, Dan Namishia