Patents by Inventor Dan Sadot

Dan Sadot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11641241
    Abstract: A method for transmitting data carrying optical information over an optical channel, comprising the steps of providing an optical transmitter consisting of a light source being a Mode-Locked Optical Frequency Comb (MLFC) for generating a frequency comb of multiple carriers, each of which being modulated by a baseband signal; an optical modulator for modulating each and all of the multiple carriers in a modulation bandwidth extending up to the modes' frequency spacing between the multiple carriers; performing all-optical encoding of the modulated carriers by manipulating the optical amplitude and/or phase and/or polarization of all optically modulated carriers; and transmitting, by the optical transmitter, the encoded modulated carriers to an optical receiver, over an optical channel.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: May 2, 2023
    Assignee: CYBERRIDGE LTD.
    Inventors: Dan Sadot, Eyal Wohlgemuth, Yaron Yoffe
  • Publication number: 20220360337
    Abstract: A method for transmitting data carrying optical information over an optical channel, comprising the steps of providing an optical transmitter consisting of a light source being a Mode-Locked Optical Frequency Comb (MLFC) for generating a frequency comb of multiple carriers, each of which being modulated by a baseband signal; an optical modulator for modulating each and all of the multiple carriers in a modulation bandwidth extending up to the modes' frequency spacing between the multiple carriers; performing all-optical encoding of the modulated carriers by manipulating the optical amplitude and/or phase and/or polarization of all optically modulated carriers; and transmitting, by the optical transmitter, the encoded modulated carriers to an optical receiver, over an optical channel
    Type: Application
    Filed: July 14, 2020
    Publication date: November 10, 2022
    Inventors: Dan SADOT, Eyal WOHLGEMUTH, Yaron YOFFE
  • Patent number: 11025339
    Abstract: A method for compensating the distortions introduced by impairments of MZMz implementing an optical transmitter, according to which the level of total amplitude and phase distortions caused by the optical transmitter is measured and all impairments in the constellation domain are compensated by pre-distorting the input signal to be transmitted by symmetrically adding imbalance to the voltage applied to the MZM arms. The imbalance is determined by introducing a phase rotation in either I or in the Q path of the optical transmitter, which compensates the total amplitude distortion, and also introducing a phase rotation to both I and Q paths of the optical transmitter, which compensate the total phase distortion and the phase shift caused by compensating the amplitude distortion, until reaching a desired operating point, which corresponds to the level of pre-distortion.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: June 1, 2021
    Assignee: B.G. NEGEV TECHNOLOGIES AND APPLICATIONS LTD., AT BEN-GURION UNIVERSITY
    Inventors: Dan Sadot, Gil Paryanti
  • Patent number: 10914633
    Abstract: Disclosed are a method for achieving ultrahigh spectral resolution and a photonic spectral processor, which is designed to carry out the method. The disclosed photonic spectral processor overcomes the current 0.8 GHz spectral resolution limitation. The new spectral processor uses a Fabry-Perot interferometer array located before the dispersive element of the system, thus significantly improving the spectral separation resolution, which is now limited by the full width at half maximum of the Fabry-Perot interferometer rather than the spectral resolution of the dispersive element spectral as is the current situation. A proof of concept experiment utilizing two Fabry-Perot interferometers and a diffractive optical grating with spectral resolution of 6.45 GHz achieving high spectral resolution of 577 MHz is described.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: February 9, 2021
    Assignees: Bar Ilan University, B. G. Negev Technologies and Applications Ltd., at Ben-Gurion University
    Inventors: Dan Sadot, Zeev Zalevsky, Tomer Yeminy, Sagie Asraf
  • Patent number: 10868561
    Abstract: A method for increasing the effective resolution of digital-to-analog conversion for the purpose of digital pre-distortion to compensate distortions of a communication channel, according to which a digital sequence of N samples x(n) to be transmitted over the communication channel are received and several quantization possibilities are generated by performing Soft Quantization (SQ) on each sample, using a soft quantizer, where low computational complexity is maintained by limiting the number of SQ possibilities. The Instantaneous costs for each possible SQ error is computed and converging paths in the Trellis diagram, which represents possible states and transitions between them, for each sample is eliminated. Then the averaged errors for each remaining path are computed and Hard-Quantization is performed to eliminate converging paths and to keep a constant number of states. These steps are repeated N times, one time for each sample and the optimal path with the lowest averaged error selecting.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: December 15, 2020
    Inventors: Yaron Yoffe, Dan Sadot
  • Publication number: 20200287560
    Abstract: A method for increasing the effective resolution of digital-to-analog conversion for the purpose of digital pre-distortion to compensate distortions of a communication channel, according to which a digital sequence of N samples x(n) to be transmitted over the communication channel are received and several quantization possibilities are generated by performing Soft Quantization (SQ) on each sample, using a soft quantizer, where low computational complexity is maintained by limiting the number of SQ possibilities. The Instantaneous costs for each possible SQ error is computed and converging paths in the Trellis diagram, which represents possible states and transitions between them, for each sample is eliminated. Then the averaged errors for each remaining path are computed and Hard-Quantization is performed to eliminate converging paths and to keep a constant number of states. These steps are repeated N times, one time for each sample and the optimal path with the lowest averaged error selecting.
    Type: Application
    Filed: November 1, 2018
    Publication date: September 10, 2020
    Inventors: Yaron Yoffe, Dan Sadot
  • Publication number: 20200092001
    Abstract: A method for compensating the distortions introduced by impairments of MZMz implementing an optical transmitter, according to which the level of total amplitude and phase distortions caused by the optical transmitter is measured and all impairments in the constellation domain are compensated by pre-distorting the input signal to be transmitted by symmetrically adding imbalance to the voltage applied to the MZM arms. The imbalance is determined by introducing a phase rotation in either I or in the Q path of the optical transmitter, which compensates the total amplitude distortion, and also introducing a phase rotation to both I and Q paths of the optical transmitter, which compensate the total phase distortion and the phase shift caused by compensating the amplitude distortion, until reaching a desired operating point, which corresponds to the level of pre-distortion.
    Type: Application
    Filed: April 30, 2018
    Publication date: March 19, 2020
    Inventors: Dan SADOT, Gil PARYANTI
  • Publication number: 20190277694
    Abstract: Disclosed are a method for achieving ultrahigh spectral resolution and a photonic spectral processor, which is designed to carry out the method. The disclosed photonic spectral processor overcomes the current 0.8 GHz spectral resolution limitation. The new spectral processor uses a Fabry-Perot interferometer array located before the dispersive element of the system, thus significantly improving the spectral separation resolution, which is now limited by the full width at half maximum of the Fabry-Perot interferometer rather than the spectral resolution of the dispersive element spectral as is the current situation. A proof of concept experiment utilizing two Fabry-Perot interferometers and a diffractive optical grating with spectral resolution of 6.45 GHz achieving high spectral resolution of 577 MHz is described.
    Type: Application
    Filed: March 6, 2019
    Publication date: September 12, 2019
    Inventors: Dan Sadot, Zeev Zalevsky, Tomer Yeminy, Sagie Asraf
  • Patent number: 10404367
    Abstract: A method for optimizing non-uniform quantization thresholds of an ADC in MLSE-based receivers in an optical communication channel, according to which a Quantized Noise (QN) distortion model, in which the quantization and the channel additive noises are combined is generated. The model is applied on the channel deterministic analog states x(n) and on sequences of analog states and transition probabilities are calculated, which will be used later on to calculate the BER, from channel deterministic states and sequences of channel deterministic states into the discrete ADC quantization regions. Real value outputs of the ADC are replaced by the transition probabilities and non-uniform quantization of the ADC is performed, with thresholds that are optimized for MLSE detection, to obtain maximal statistical separation.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: September 3, 2019
    Assignee: B.G. Negev Technologies and Applications Ltd., at Ben-Gurion University
    Inventors: Dan Sadot, Yaron Yoffe
  • Patent number: 10333747
    Abstract: Disclosed is a method of compensating for coupling impairments in optical communication systems comprising two or more coupled transmission lines. The method comprises introducing into the system a component comprising an electronic circuit configured to realize at least one of an exact electrical coupling compensation (EECC) algorithm and a spectrally fragmented electrical coupling compensation (SF-ECC) algorithm.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: June 25, 2019
    Assignee: B.G. Negev Technologies and Applications Ltd., at Ben-Gurion University
    Inventors: Yanir London, Dan Sadot
  • Patent number: 10236952
    Abstract: A system for optimizing power allocation for each optical transmitter in an optical transmission system, the system comprises at least two intensity modulated optical transmitters, each of which is controlled by a modulator; an optical channel that can be spatially multiplexed by a multiplexer; and at least two optical detectors, for detecting the transmitted modulated signals. Each of the modulators are adapted to modulate the transmitters such that the electrical power consumption of the optical transmitters is minimized by a modulation scheme of the modulators, that uses energy efficient convex optimization to multiplex the transmitted optical signals, by the multiplexer in a multiple-input-multiple-output (MIMO) scheme.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: March 19, 2019
    Assignee: B. G. Negev Technologies and Applications Ltd., at Ben-Gurion University
    Inventors: Dan Sadot, Nir Sheffi
  • Publication number: 20190013864
    Abstract: A method for optimizing non-uniform quantization thresholds of an ADC in MLSE-based receivers in an optical communication channel, according to which a Quantized Noise (QN) distortion model, in which the quantization and the channel additive noises are combined is generated. The model is applied on the channel deterministic analog states x(n) and on sequences of analog states and transition probabilities are calculated, which will be used later on to calculate the BER, from channel deterministic states and sequences of channel deterministic states into the discrete ADC quantization regions. Real value outputs of the ADC are replaced by the transition probabilities and non-uniform quantization of the ADC is performed, with thresholds that are optimized for MLSE detection, to obtain maximal statistical separation.
    Type: Application
    Filed: January 6, 2017
    Publication date: January 10, 2019
    Inventors: Dan SADOT, Yaron YOFFE
  • Publication number: 20180350468
    Abstract: Among the techniques described herein is a method that includes obtaining data indicating electrocardiogram results from a human. A plurality of beats represented in the electrocardiogram results can be identified. For each beat in the plurality of beats represented in the electrocardiogram results, a value for a first feature of the beat can be determined. Statistical analysis can be performed on the values for the first feature of the plurality of beats. An indication of the level of the analyte within the human can be generated based on a result of the statistical analysis performed on the values for the first feature of the plurality of beats. The indication of the level of the analyte within the human can be provided.
    Type: Application
    Filed: November 23, 2016
    Publication date: December 6, 2018
    Inventors: Paul A. FRIEDMAN, Kevin E. BENNET, Samuel J. ASIRVATHAM, Charles J. BRUCE, Michael J. ACKERMAN, John J. DILLON, Virend K. SOMERS, Dan SADOT, Amir GEVA, Yehu SAPIR, Zachi ATTIA
  • Patent number: 9954620
    Abstract: A method for performing optical constellation conversion, according to which each received symbol from a constellation of input symbols is optically split into M components and each component is multiplied by a first predetermined different complex weighing factor, to achieve M firstly weighted components with different amplitudes. Then a nonlinear processor optically performs a nonlinear transform on each M firstly weighted components, so as to obtain M outputs which are linearly independent, Finally, a linear processor optically performs a linear transform to obtain a new converted constellation by optically multiplying, in the complex plane, each of the M outputs by a second predetermined different complex weighing factor, to achieve M secondly weighted components and then summing the M secondly weighted components.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: April 24, 2018
    Assignees: B.G. Negev Technologies and Applications Ltd., at Ben-Gurion University, Bar Ilan University
    Inventors: Dan Sadot, Zeev Zalevsky, Tomer Yeminy
  • Publication number: 20180062885
    Abstract: Disclosed is a method of compensating for coupling impairments in optical communication systems comprising two or more coupled transmission lines. The method comprises introducing into the system a component comprising an electronic circuit configured to realize at least one of an exact electrical coupling compensation (EECC) algorithm and a spectrally fragmented electrical coupling compensation (SF-ECC) algorithm.
    Type: Application
    Filed: August 23, 2017
    Publication date: March 1, 2018
    Inventors: Yanir LONDON, Dan SADOT
  • Patent number: 9825785
    Abstract: A system for digitally equalizing a data channel with heavily ISI-induced signals received after passing a data communication channel using a combination of a linear equalizer and a nonlinear equalizer, which comprises an ADC, for sampling a received signal and converting it to a digital form; a Linear Equalizer for pre-processing said received signal, said Linear Equalizer is adapted to pre-process a first group consisting of echoes/channel taps of the induced ISI, which are not equalized by said nonlinear equalizer, by eliminating the echoes/channel taps of said first group; pre-process a second group consisting of the combination of the entire echoes/channel taps of the induced ISI, by eliminating the echoes/channel taps of said second group; and a nonlinear equalizer for receiving the signals preprocessed by said Linear Equalizer and for further processing said preprocessed signals and eliminating the echoes/channel taps of the induced ISI to be equalized by said nonlinear equalizer, thereby compensating
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: November 21, 2017
    Assignee: Multiphy Ltd.
    Inventors: Guy Dorman, Dan Sadot, Albert Gorshtein
  • Patent number: 9768914
    Abstract: A method for performing blind channel estimation for an MLSE receiver in a communication channel, according to which Initial Metrics Determination Procedure (IMDP) is performed using joint channel and data estimation in a decision directed mode. This is done by generating a bank of initial metrics that assures convergence, based on initial coarse histograms estimation, representing the channel and selecting a first metrics set M from the predefined bank. Then an iterative decoding procedure is activated during which, a plurality of decision-directed adaptation learning loops are carried out to perform an iterative histograms estimation procedure for finely tuning the channel estimation. Data is decoded during each iteration, based on a previous estimation of the channel during the previous iteration. If convergence is achieved, ISI optimization that maximizes the amount of ISI that is compensated by the MLSE is performed.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: September 19, 2017
    Assignee: Multiphy Ltd.
    Inventors: Omri Levy, Gilad Katz, Albert Gorshtein, Dan Sadot
  • Publication number: 20170222729
    Abstract: A method for performing optical constellation conversion, according to which each received symbol from a constellation of input symbols is optically split into M components and each component is multiplied by a first predetermined different complex weighing factor, to achieve M firstly weighted components with different amplitudes. Then a nonlinear processor optically performs a nonlinear transform on each M firstly weighted components, so as to obtain M outputs which are linearly independent, Finally, a linear processor optically performs a linear transform to obtain a new converted constellation by optically multiplying, in the complex plane, each of the M outputs by a second predetermined different complex weighing factor, to achieve M secondly weighted components and then summing the M secondly weighted components.
    Type: Application
    Filed: October 1, 2015
    Publication date: August 3, 2017
    Inventors: Dan SADOT, Zeev ZALEVSKY, Tomer YEMINY
  • Patent number: 9628193
    Abstract: A method for estimating the phase of a modulated complex optical signal, according to which, the phase of the signal is isolated and the complex amplitude of the signal is digitized by a block of P samples. An adaptive filter minimizes phase-error between the phase of the received symbol and the phase of a sample, rotated by a phase correction factor, by iteratively performing a Block-Wise Phase LMS estimation on the samples using a step size parameter. During each iteration, the resulting correction factor consists of the sum of the estimated errors multiplied by this parameter, and the correction factor of previous iteration, which is updated, until obtaining the final correction factor from the last iteration. The samples constituting the received signal are recovered by adding the most updated correction factor to the phase of each sample and performing a decision regarding the phase of each sample.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: April 18, 2017
    Assignee: Multiphy Ltd.
    Inventors: Nir Sheffi, Gilad Katz, Albert Gorshtein, Ehud Barzilai, Dan Sadot
  • Patent number: 9608735
    Abstract: The present invention is directed to a MIMO equalization system and method, optimized for baud rate clock recovery in coherent symbol-spaced DP-QPSK Metro systems. According to this method, the Mueller & Muller timing function is extended to cope with controlled ISI induced signals, while decoupling between MIMO equalization and clock recovery loops, using a midpoint output of the equalizer for timing estimation, instead of its final output. At least a portion of controlled Inter-Symbol Interference (ISI) is kept intact and the controlled ISI is compensated by an MLSE, right after carrier timing synchronization.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: March 28, 2017
    Assignee: Multiphy Ltd.
    Inventors: Albert Gorshtein, Guy Dorman, Dan Sadot