Patents by Inventor Dan Y. Liu

Dan Y. Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9067694
    Abstract: A system and a method for commanding a spacecraft to perform a three-axis maneuver purely based on “position” (i.e., attitude) measurements. Using an “inertial gimbal concept”, a set of formulae are derived that can map a set of “inertial” motion to the spacecraft body frame based on position information so that the spacecraft can perform/follow according to the desired inertial position maneuvers commands. Also, the system and method disclosed herein employ an intrusion steering law to protect the spacecraft from acquisition failure when a long sensor intrusion occurs.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: June 30, 2015
    Assignee: The Boeing Company
    Inventors: Dan Y. Liu, Richard Y. Chiang
  • Patent number: 8620496
    Abstract: A system for damping nutation and removing wobble of a spacecraft spinning about a given axis is provided. The system includes a sensor configured to determine three dimensional attitude measurements of the spacecraft, a processor operatively coupled to the sensor and configured to execute a process that facilitates aligning the spin axis with a spacecraft momentum vector. The processor, when executing the process, is programmed to receive spacecraft attitude data from the sensor, determine a torque command using the received attitude data, and control a momentum storage actuator on the spacecraft using the determined torque command such that an angular deviation about the given axis is reduced.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: December 31, 2013
    Assignee: The Boeing Company
    Inventors: Dan Y. Liu, Qinghong W. Wang, Richard Y. Chiang
  • Patent number: 8380370
    Abstract: A system and a method for commanding a spacecraft to perform a three-axis maneuver purely based on “position” (i.e., attitude) measurements. Using an “inertial gimbal concept”, a set of formulae are derived that can map a set of “inertial” motion to the spacecraft body frame based on position information so that the spacecraft can perform/follow according to the desired inertial position maneuvers commands. Also, the system and method disclosed herein employ an intrusion steering law to protect the spacecraft from acquisition failure when a long sensor intrusion occurs.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: February 19, 2013
    Assignee: The Boeing Company
    Inventors: Dan Y. Liu, Richard Y. Chiang
  • Publication number: 20100193641
    Abstract: A system and a method for commanding a spacecraft to perform a three-axis maneuver purely based on “position” (i.e., attitude) measurements. Using an “inertial gimbal concept”, a set of formulae are derived that can map a set of “inertial” motion to the spacecraft body frame based on position information so that the spacecraft can perform/follow according to the desired inertial position maneuvers commands. Also, the system and method disclosed herein employ an intrusion steering law to protect the spacecraft from acquisition failure when a long sensor intrusion occurs.
    Type: Application
    Filed: June 18, 2009
    Publication date: August 5, 2010
    Applicant: THE BOEING COMPANY
    Inventors: Dan Y. Liu, Richard Y. Chiang
  • Publication number: 20100019092
    Abstract: A system for damping nutation and removing wobble of a spacecraft spinning about a given axis is provided. She system includes a sensor configured to determine three dimensional attitude measurements of the spacecraft, a processor operatively coupled to the sensor and configured to execute a process that facilitates aligning the spin axis with a spacecraft momentum vector. The processor, when executing the process, is programmed to receive spacecraft attitude data from the sensor, determine a torque command using the received attitude data, and control a momentum storage actuator on the spacecraft using the determined torque command such that an angular deviation about the given axis is reduced.
    Type: Application
    Filed: July 23, 2008
    Publication date: January 28, 2010
    Inventors: Dan Y. Liu, Qinghong W. Wang, Richard Y. Chiang
  • Patent number: 5311435
    Abstract: A method of attitude control for spacecraft with flexible structures utilizes an estimator/state controller pair with on-board time-varying gain scheduling. The control method includes an attitude estimator (100) for each axis, which uses rate input from inertial reference sensors (4, 5, 6) to produce estimates (37, 38, 39) of each of the state variables. The estimator employs a predictor-corrector structure which computes initial rate and position estimates for each sample interval and corrects these values by weighing them with iteratively-calculated time-varying gains according to equations 35 and 36. The state controller (40) for each axis operates on these inputs, combining them with position and rate commands (41, 42) and weighing the results with time-varying gains calculated iteratively for each sample period according to equations 46, 47, and 48. The final result is a commanded control acceleration (50) which is forwarded to a thruster modulation logic.
    Type: Grant
    Filed: November 27, 1991
    Date of Patent: May 10, 1994
    Assignee: Hughes Aircraft Company
    Inventors: John F. Yocum, Dan Y. Liu
  • Patent number: 5310143
    Abstract: The three axes thruster modulation (8) of the present invention accepts three axes of input torque commands or angular acceleration commands and generates thruster selection and thruster timing (40) information which is used to fire thrusters (48) for the purpose of spacecraft attitude control and velocity change maneuvers. The modulation logic (8) works in all three axes simultaneously and is suitable for use with an arbitrary thruster configuration, including a configuration in which individual thrusters or thruster groups do not produce torques about mutually orthogonal axes. After thruster selection and on-times have been determined, the modulation logic (8) uses this information to compute a best estimate of the actual rate change (42) which is then compared to the commanded rate change (44) to develop a residual unfired rate change.
    Type: Grant
    Filed: June 10, 1993
    Date of Patent: May 10, 1994
    Assignee: Hughes Aircraft Company
    Inventors: John F. Yocum, Dan Y. Liu, Richard A. Fowell, Douglas J. Bender