Patents by Inventor Dana DeReus

Dana DeReus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11124410
    Abstract: Devices and methods of operating partitioned actuator plates to obtain a desirable shape of a movable component of a micro-electro-mechanical system (MEMS) device. The subject matter described herein can in some embodiments include a micro-electro-mechanical system (MEMS) device including a plurality of actuation electrodes attached to a first surface, where each of the one or more actuation electrode being independently controllable, and a movable component spaced apart from the first surface and movable with respect to the first surface. Where the movable component further includes one or more movable actuation electrodes spaced apart from the plurality of fixed actuation electrodes.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: September 21, 2021
    Assignee: WISPRY, INC.
    Inventors: Dana DeReus, Shawn J. Cunningham, Arthur S. Morris, III
  • Publication number: 20210134532
    Abstract: Systems, devices, and methods for micro-electro-mechanical system (MEMS) tunable capacitors can include a fixed actuation electrode attached to a substrate, a fixed capacitive electrode attached to the substrate, and a movable component positioned above the substrate and movable with respect to the fixed actuation electrode and the fixed capacitive electrode. The movable component can include a movable actuation electrode positioned above the fixed actuation electrode and a movable capacitive electrode positioned above the fixed capacitive electrode. At least a portion of the movable capacitive electrode can be spaced apart from the fixed capacitive electrode by a first gap, and the movable actuation electrode can be spaced apart from the fixed actuation electrode by a second gap that is larger than the first gap.
    Type: Application
    Filed: November 16, 2020
    Publication date: May 6, 2021
    Inventors: Arthur S. Morris, III, Dana DeReus, Norlito Baytan
  • Patent number: 10840026
    Abstract: Systems, devices, and methods for micro-electro-mechanical system (MEMS) tunable capacitors can include a fixed actuation electrode attached to a substrate, a fixed capacitive electrode attached to the substrate, and a movable component positioned above the substrate and movable with respect to the fixed actuation electrode and the fixed capacitive electrode. The movable component can include a movable actuation electrode positioned above the fixed actuation electrode and a movable capacitive electrode positioned above the fixed capacitive electrode. At least a portion of the movable capacitive electrode can be spaced apart from the fixed capacitive electrode by a first gap, and the movable actuation electrode can be spaced apart from the fixed actuation electrode by a second gap that is larger than the first gap.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: November 17, 2020
    Assignee: WISPRY, INC.
    Inventors: Arthur S. Morris, III, Dana DeReus, Norlito Baytan
  • Patent number: 10658926
    Abstract: The present subject matter relates to charge pump devices, systems, and methods in which a plurality of series-connected charge-pump stages are connected between a supply voltage node and a primary circuit node, and a discharge circuit is connected to the plurality of charge-pump stages, wherein the discharge circuit is configured to selectively remove charge from the primary circuit node.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: May 19, 2020
    Assignee: WISPRY, INC.
    Inventors: Dana DeReus, Arthur S. Morris, III, David Zimlich, Vincent Cheung
  • Patent number: 10640362
    Abstract: The present subject matter relates to systems, devices, and methods for reducing surface dielectric charging in a RF MEMS actuator element. In particular, a micro-electro-mechanical systems (MEMS) can comprise a fixed electrode positioned on a substrate, a moveable electrode positioned substantially above the fixed electrode and separated from the fixed electrode by a gap, and at least one standoff bump positioned between the fixed electrode and the moveable electrode, wherein the at least one standoff bump extends into the gap. In this configuration, one or both of the fixed electrode or the moveable electrode can be patterned to define one or more hole that is substantially aligned with the one or more of the at least one standoff bump. The bump and the hole can both help to reduce the rate of surface dielectric charging and the total amount of charge generated.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: May 5, 2020
    Assignee: WISPRY, INC.
    Inventors: David Molinero-Giles, Shawn J. Cunningham, Dana DeReus
  • Publication number: 20190362899
    Abstract: Systems, devices, and methods for micro-electro-mechanical system (MEMS) tunable capacitors can include a fixed actuation electrode attached to a substrate, a fixed capacitive electrode attached to the substrate, and a movable component positioned above the substrate and movable with respect to the fixed actuation electrode and the fixed capacitive electrode. The movable component can include a movable actuation electrode positioned above the fixed actuation electrode and a movable capacitive electrode positioned above the fixed capacitive electrode. At least a portion of the movable capacitive electrode can be spaced apart from the fixed capacitive electrode by a first gap, and the movable actuation electrode can be spaced apart from the fixed actuation electrode by a second gap that is larger than the first gap.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 28, 2019
    Inventors: Arthur S. Morris, III, Dana DeReus, Norlito Baytan
  • Publication number: 20190267894
    Abstract: The present subject matter relates to charge pump devices, systems, and methods in which a plurality of series-connected charge-pump stages are connected between a supply voltage node and a primary circuit node, and a discharge circuit is connected to the plurality of charge-pump stages, wherein the discharge circuit is configured to selectively remove charge from the primary circuit node.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 29, 2019
    Inventors: Dana DeReus, Arthur S. Morris, III, David Zimlich, Vincent Cheung
  • Patent number: 10354804
    Abstract: Systems, devices, and methods for micro-electro-mechanical system (MEMS) tunable capacitors can include a fixed actuation electrode attached to a substrate, a fixed capacitive electrode attached to the substrate, and a movable component positioned above the substrate and movable with respect to the fixed actuation electrode and the fixed capacitive electrode. The movable component can include a movable actuation electrode positioned above the fixed actuation electrode and a movable capacitive electrode positioned above the fixed capacitive electrode. At least a portion of the movable capacitive electrode can be spaced apart from the fixed capacitive electrode by a first gap, and the movable actuation electrode can be spaced apart from the fixed actuation electrode by a second gap that is larger than the first gap.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: July 16, 2019
    Assignee: WISPRY, INC.
    Inventors: Arthur S. Morris, III, Dana DeReus, Norito Baytan
  • Publication number: 20190144263
    Abstract: Devices and methods of operating partitioned actuator plates to obtain a desirable shape of a movable component of a micro-electro-mechanical system (MEMS) device. The subject matter described herein can in some embodiments include a micro-electro-mechanical system (MEMS) device including a plurality of actuation electrodes attached to a first surface, where each of the one or more actuation electrode being independently controllable, and a movable component spaced apart from the first surface and movable with respect to the first surface. Where the movable component further includes one or more movable actuation electrodes spaced apart from the plurality of fixed actuation electrodes.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 16, 2019
    Inventors: Dana DeReus, Shawn J. Cunningham, Arthur S. Morris, III
  • Patent number: 10125008
    Abstract: Devices and methods of operating partitioned actuator plates to obtain a desirable shape of a movable component of a micro-electro-mechanical system (MEMS) device. The subject matter described herein can in some embodiments include a micro-electro-mechanical system (MEMS) device including a plurality of actuation electrodes attached to a first surface, where each of the one or more actuation electrode being independently controllable, and a movable component spaced apart from the first surface and movable with respect to the first surface. Where the movable component further includes one or more movable actuation electrodes spaced apart from the plurality of fixed actuation electrodes.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: November 13, 2018
    Assignee: WISPRY, INC.
    Inventors: Dana DeReus, Shawn J. Cunningham, Arthur S. Morris, III
  • Patent number: 10062517
    Abstract: Systems, devices, and methods for micro-electro-mechanical system (MEMS) tunable capacitors can include a fixed actuation electrode attached to a substrate, a fixed capacitive electrode attached to the substrate, and a movable component positioned above the substrate and movable with respect to the fixed actuation electrode and the fixed capacitive electrode. The movable component can include a movable actuation electrode positioned above the fixed actuation electrode and a movable capacitive electrode positioned above the fixed capacitive electrode. At least a portion of the movable capacitive electrode can be spaced apart from the fixed capacitive electrode by a first gap, and the movable actuation electrode can be spaced apart from the fixed actuation electrode by a second gap that is larger than the first gap.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: August 28, 2018
    Assignee: WISPRY, INC.
    Inventors: Arthur S. Morris, III, Dana DeReus, Norito Baytan
  • Patent number: 9695037
    Abstract: The present subject matter relates to systems and methods for sealing one or more MEMS devices within an encapsulated cavity. A first material layer can be positioned on a substrate, the first material layer comprising a first cavity and a second cavity that each have one or more openings out of the first material layer. At least the first cavity can be exposed to a first atmosphere and sealed while it is exposed to the first atmosphere while not sealing the second cavity. The second cavity can then be exposed to a second atmosphere that is different than the first atmosphere, and the second cavity can be sealed while it is exposed to the second atmosphere.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: July 4, 2017
    Assignee: WISPRY, INC.
    Inventors: Arthur S. Morris, III, Dana DeReus
  • Publication number: 20170154734
    Abstract: Systems, devices, and methods for micro-electro-mechanical system (MEMS) tunable capacitors can include a fixed actuation electrode attached to a substrate, a fixed capacitive electrode attached to the substrate, and a movable component positioned above the substrate and movable with respect to the fixed actuation electrode and the fixed capacitive electrode. The movable component can include a movable actuation electrode positioned above the fixed actuation electrode and a movable capacitive electrode positioned above the fixed capacitive electrode. At least a portion of the movable capacitive electrode can be spaced apart from the fixed capacitive electrode by a first gap, and the movable actuation electrode can be spaced apart from the fixed actuation electrode by a second gap that is larger than the first gap.
    Type: Application
    Filed: December 9, 2016
    Publication date: June 1, 2017
    Inventors: Arthur S. Morris, III, Dana DeReus, Norito Baytan
  • Publication number: 20160099112
    Abstract: The present subject matter relates to devices, systems, and methods for isolation of electrostatic actuators in MEMS devices to reduce or minimize dielectric charging. A tunable component can include a fixed actuator electrode positioned on a substrate, a movable actuator electrode carried on a movable component that is suspended over the substrate, one or more isolation bumps positioned between the fixed actuator electrode and the movable actuator electrode, and a fixed isolation landing that is isolated within a portion of the fixed actuator electrode that is at, near, and/or substantially aligned with each of the one or more isolation bumps. In this arrangement, the movable actuator electrode can be selectively movable toward the fixed actuator electrode, but the one or more isolation bumps can prevent contact between the fixed and movable actuator electrodes, and the fixed isolation landing can inhibit the development of an electric field in the isolation bump.
    Type: Application
    Filed: October 5, 2015
    Publication date: April 7, 2016
    Inventors: Dana DeReus, Arthur S. Morris, III, David Molinero-Giles
  • Publication number: 20160096723
    Abstract: The present subject matter relates to systems and methods for sealing one or more MEMS devices within an encapsulated cavity. A first material layer can be positioned on a substrate, the first material layer comprising a first cavity and a second cavity that each have one or more openings out of the first material layer. At least the first cavity can be exposed to a first atmosphere and sealed while it is exposed to the first atmosphere while not sealing the second cavity. The second cavity can then be exposed to a second atmosphere that is different than the first atmosphere, and the second cavity can be sealed while it is exposed to the second atmosphere.
    Type: Application
    Filed: October 13, 2015
    Publication date: April 7, 2016
    Inventors: Arthur S. Morris, III, Dana DeReus
  • Patent number: 9156683
    Abstract: The present subject matter relates to systems and methods for sealing one or more MEMS devices within an encapsulated cavity. A first material layer can be positioned on a substrate, the first material layer comprising a first cavity and a second cavity that each have one or more openings out of the first material layer. At least the first cavity can be exposed to a first atmosphere and sealed while it is exposed to the first atmosphere while not sealing the second cavity. The second cavity can then be exposed to a second atmosphere that is different than the first atmosphere, and the second cavity can be sealed while it is exposed to the second atmosphere.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: October 13, 2015
    Assignee: WISPRY, INC.
    Inventors: Arthur S. Morris, III, Dana DeReus
  • Publication number: 20150279602
    Abstract: The present subject matter relates to systems, devices, and methods for reducing surface dielectric charging in a RF MEMS actuator element. In particular, a micro-electro-mechanical systems (MEMS) can comprise a fixed electrode positioned on a substrate, a moveable electrode positioned substantially above the fixed electrode and separated from the fixed electrode by a gap, and at least one standoff bump positioned between the fixed electrode and the moveable electrode, wherein the at least one standoff bump extends into the gap. In this configuration, one or both of the fixed electrode or the moveable electrode can be patterned to define one or more hole that is substantially aligned with the one or more of the at least one standoff bump. The bump and the hole can both help to reduce the rate of surface dielectric charging and the total amount of charge generated.
    Type: Application
    Filed: April 1, 2015
    Publication date: October 1, 2015
    Inventors: David Molinero-Giles, Shawn J. Cunningham, Dana DeReus
  • Patent number: 9019687
    Abstract: The present subject matter relates to the use of current splitting and routing techniques to distribute current uniformly among the various layers of a device to achieve a high Q-factor. Such current splitting can allow the use of relatively narrow interconnects and feeds while maintaining a high Q. Specifically, for example a micro-electromechanical systems (MEMS) device can comprise a metal layer comprising a first portion and a second portion that is electrically separated from the first portion. A first terminus can be independently connected to each of the first portion and the second portion of the metal layer, wherein the first portion defines a first path between the metal layer and the first terminus, and the second portion defines a second path between the metal layer and the first terminus.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: April 28, 2015
    Assignee: Wispry, Inc.
    Inventors: Arthur S. Morris, III, Saravana Natarajan, Dana DeReus
  • Publication number: 20140268482
    Abstract: Devices and methods of operating partitioned actuator plates to obtain a desirable shape of a movable component of a micro-electro-mechanical system (MEMS) device. The subject matter described herein can in some embodiments include a micro-electro-mechanical system (MEMS) device including a plurality of actuation electrodes attached to a first surface, where each of the one or more actuation electrode being independently controllable, and a movable component spaced apart from the first surface and movable with respect to the first surface. Where the movable component further includes one or more movable actuation electrodes spaced apart from the plurality of fixed actuation electrodes.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Inventors: Dana DeReus, Shawn J. Cunningham, Arthur S. Morris, III
  • Publication number: 20140211366
    Abstract: Systems, devices, and methods for micro-electro-mechanical system (MEMS) tunable capacitors can include a fixed actuation electrode attached to a substrate, a fixed capacitive electrode attached to the substrate, and a movable component positioned above the substrate and movable with respect to the fixed actuation electrode and the fixed capacitive electrode. The movable component can include a movable actuation electrode positioned above the fixed actuation electrode and a movable capacitive electrode positioned above the fixed capacitive electrode. At least a portion of the movable capacitive electrode can be spaced apart from the fixed capacitive electrode by a first gap, and the movable actuation electrode can be spaced apart from the fixed actuation electrode by a second gap that is larger than the first gap.
    Type: Application
    Filed: September 20, 2013
    Publication date: July 31, 2014
    Inventors: Arthur S. Morris, III, Dana DeReus, Norito Baytan