Patents by Inventor Dana Zachary Anderson

Dana Zachary Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220237613
    Abstract: A atomtronics station and a cloud-based server cooperate to provide Bose-Einstein condensates as a service (ATaaS). The atomtronics station serves as a system for implementing “recipes” for producing, manipulating, and/or using atomtronic devices based on cold atoms that are, in some respects, analogous to classical electronic devices based on electricity. The cloud-based server acts as an interface between the station (or stations) and authorized users of account holders. To this end the server hosts an account manager and a session manager. The account manager manages accounts and associated account-based and user-specific permissions that define what actions any given authorized user for an account may perform with respect to an atomtronics station. The session manager controls (in some cases, real-time) interactions between a user and an atomtronics station, some interactions allowing a user to select a recipe based on results returned earlier in the same session.
    Type: Application
    Filed: April 17, 2022
    Publication date: July 28, 2022
    Inventors: Dana Zachary ANDERSON, Seth Charles CALIGA, Farhad MAJDETEIMOURI
  • Publication number: 20220237497
    Abstract: A shaken-lattice station and a cloud-based server cooperate to provide shaken lattices as a service (SLaaS). The shaken-lattice station serves as a system for implementing “recipes” for creating and using shaking functions to be applied to light used to trap quantum particles. The cloud-based server acts as an interface between the shaken-lattice station (or stations) and authorized users of account holders. To this end the server hosts an account manager and a session manager. The account manager manages accounts and associated account-based and user-specific permissions that define what actions any given authorized user for an account may perform with respect to a shaken-lattice station. The session manager controls (e.g., in real-time) interactions between a user and a shaken-lattice station, some interactions allowing a user to select a recipe based on results returned earlier in the same session.
    Type: Application
    Filed: April 17, 2022
    Publication date: July 28, 2022
    Inventors: Dana Zachary ANDERSON, Seth Charles CALIGA, Farhad MAJDETEIMOURI
  • Publication number: 20220236060
    Abstract: A matter-wave gyro with counter-propagating traps uses three-dimensional lattices formed of interference fringes from three pairs of interfering laser beams. Particles, such as neutral atoms, ion, or molecules are cooled to a ground state near absolute zero. The resulting ultra-cold particles are loaded into the lattices. The laser beams used to form the lattices are driven according to functions that cause the lattices to counter-propagate about a closed path (Sagnac loop) N times, where a desired tradeoff between spatial resolution and temporal resolution can be achieved by choosing an appropriate integer value of N. The lattices can be extinguished so that the particles can be imaged to identify an interference pattern. A shift in the interference pattern relative to an interference pattern that would occur with zero angular momentum can be used to measure angular momentum.
    Type: Application
    Filed: February 27, 2019
    Publication date: July 28, 2022
    Applicant: ColdQuanta, Inc.
    Inventor: Dana Zachary ANDERSON
  • Patent number: 11397085
    Abstract: A matter-wave gyro with counter-propagating traps uses three-dimensional lattices formed of interference fringes from three pairs of interfering laser beams. Particles, such as neutral atoms, ion, or molecules are cooled to a ground state near absolute zero. The resulting ultra-cold particles are loaded into the lattices. The laser beams used to form the lattices are driven according to functions that cause the lattices to counter-propagate about a closed path (Sagnac loop) N times, where a desired tradeoff between spatial resolution and temporal resolution can be achieved by choosing an appropriate integer value of N. The lattices can be extinguished so that the particles can be imaged to identify an interference pattern. A shift in the interference pattern relative to an interference pattern that would occur with zero angular momentum can be used to measure angular momentum.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: July 26, 2022
    Assignee: ColdQuanta, Inc.
    Inventor: Dana Zachary Anderson
  • Patent number: 11334812
    Abstract: A cold-quanta station and a cloud-based server cooperate to provide cold quanta as a service (CQaaS). The cold-quanta station serves as a system for implementing “recipes” for producing, manipulating, and/or using cold (<1 mK) monatomic or polyatomic molecules, e.g., cold Rubidium 87 atoms. The cloud-based server acts as an interface between the station (or stations) and authorized users of account holders. To this end the server hosts an account manager and a session manager. The account manager manages accounts and associated account-based and user-specific permissions that define what actions any given authorized user for an account may perform with respect to a quantum-mechanics station. The session manager controls (in some cases real-time) interactions between a user and a quantum-mechanics station, some interactions allowing a user to select a recipe based on results returned earlier in the same session.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: May 17, 2022
    Assignee: ColdQuanta, Inc.
    Inventors: Dana Zachary Anderson, Seth Charles Caliga, Farhad Majdeteimouri
  • Patent number: 11257605
    Abstract: Atom-scale particles, e.g., neutral and charged atoms and molecules, are pre-cooled, e.g., using magneto-optical traps (MOTs), to below 100 ?K to yield cold particles. The cold particles are transported to a sensor cell which cools the cold particles to below 1 ?K using an optical trap; these particles are stored in a reservoir within an optical trap within the sensor cell so that they are readily available to replenish a sensor population of particles in quantum superposition. A baffle is disposed between the MOTs and the sensor cell to prevent near-resonant light leaking from the MOTs from entering the sensor cell (and exciting the ultra-cold particles in the reservoir). The transporting from the MOTs to the sensor cell is effected by moving optical fringes of optical lattices and guiding the cold particles attached to the fringes along a meandering path through the baffle and into the sensor cell.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: February 22, 2022
    Assignee: ColdQuanta, Inc.
    Inventors: Dana Zachary Anderson, Clifton Leon Anderson
  • Publication number: 20220012618
    Abstract: An adaptive quantum signal processor (AQSP) includes a signal combiner, a physics station, a measurement system, a machine-learning engine and an output generator. The signal combiner combines incoming signals with control functions to yield recipe functions. For example, the recipe functions can be “shaking” functions used to change the wavefunctions of atoms entrained in an optical lattice. The recipe functions are applied to wavefunctions in initial wavefunction states causing the wavefunctions to transition to signal-impacted states. The measurement system measures the wavefunctions in their signal-impacted quantum states to yield wavefunction characterizations. The machine-learning engine updates control functions based on the wavefunction characterizations. The output generator outputs results based on the wavefunction characterizations and/or control function characterizations. In a matched-filter application, the outputs characterize (e.g., identify, classify, rate) the incoming signals.
    Type: Application
    Filed: February 15, 2021
    Publication date: January 13, 2022
    Inventors: Evan SALIM, Dana Zachary ANDERSON
  • Publication number: 20220003829
    Abstract: A probe laser beam causes molecules to transition from a ground state to an excited state. A control laser beam causes molecules in the excited state to transition to a laser-induced Rydberg state. Microwave lenses convert a microwave wavefront into respective microwave beams. The microwave beams are counter-propagated through molecules so as to create a microwave interference pattern of alternating maxima and minima. The microwave interference pattern is imposed on the probe beam as a probe transmission pattern. The propagation direction of the microwave wavefront can be determined from the translational position of the probe transmission pattern; the intensity of the microwave wavefront can be determined by the intensity difference between the minima and maxima of the probe transmission pattern.
    Type: Application
    Filed: September 15, 2020
    Publication date: January 6, 2022
    Inventors: Dana Zachary ANDERSON, Haoquan FAN, Ying-Ju WANG, Eric Magnuson BOTTOMLEY
  • Publication number: 20210383939
    Abstract: Atom-scale particles, e.g., neutral and charged atoms and molecules, are pre-cooled, e.g., using magneto-optical traps (MOTs), to below 100 ?K to yield cold particles. The cold particles are transported to a sensor cell which cools the cold particles to below 1 ?K using an optical trap; these particles are stored in a reservoir within an optical trap within the sensor cell so that they are readily available to replenish a sensor population of particles in quantum superposition. A baffle is disposed between the MOTs and the sensor cell to prevent near-resonant light leaking from the MOTs from entering the sensor cell (and exciting the ultra-cold particles in the reservoir). The transporting from the MOTs to the sensor cell is effected by moving optical fringes of optical lattices and guiding the cold particles attached to the fringes along a meandering path through the baffle and into the sensor cell.
    Type: Application
    Filed: August 2, 2021
    Publication date: December 9, 2021
    Inventors: Dana Zachary ANDERSON, Clifton Leon ANDERSON
  • Publication number: 20210336032
    Abstract: A qubit array reparation system includes a reservoir of ultra-cold particle, a detector that determines whether or not qubit sites of a qubit array include respective qubit particles, and a transport system for transporting an ultra-cold particle to a first qubit array site that has been determined by the probe system to not include a qubit particle so that the ultra-cold particle can serve as a qubit particle for the first qubit array site. A qubit array reparation process includes maintaining a reservoir of ultra-cold particles, determining whether or not qubit-array sites contain respective qubit particles, each qubit particle having a respective superposition state, and, in response to a determination that a first qubit site does not contain a respective qubit particle, transporting an ultracold particle to the first qubit site to serve as a qubit particle contained by the first qubit site.
    Type: Application
    Filed: May 21, 2021
    Publication date: October 28, 2021
    Applicant: ColdQuanta, Inc.
    Inventors: Dana Zachary ANDERSON, Brad Anthony DINARDO
  • Publication number: 20210296021
    Abstract: A cold-quanta station and a cloud-based server cooperate to provide cold quanta as a service (CQaaS). The cold-quanta station serves as a system for implementing “recipes” for producing, manipulating, and/or using cold (<1 mK) monatomic or polyatomic molecules, e.g., cold Rubidium 87 atoms. The cloud-based server acts as an interface between the station (or stations) and authorized users of account holders. To this end the server hosts an account manager and a session manager. The account manager manages accounts and associated account-based and user-specific permissions that define what actions any given authorized user for an account may perform with respect to a quantum-mechanics station. The session manager controls (in some cases real-time) interactions between a user and a quantum-mechanics station, some interactions allowing a user to select a recipe based on results returned earlier in the same session.
    Type: Application
    Filed: June 29, 2020
    Publication date: September 23, 2021
    Inventors: Dana Zachary ANDERSON, Seth Charles CALIGA, Farhad MAJDETEIMOURI
  • Publication number: 20210295195
    Abstract: A quantum-mechanics station (?-station) and a cloud-based server cooperate to provide quantum mechanics as a service (?aaS) including real-time, exclusive, interactive sessions. The ?-station serves as a system for implementing “recipes” for producing, manipulating, and/or using quantum-state carriers, e.g., rubidium 87 atoms. The cloud-based server acts as an interface between the station (or stations) and authorized users of account holders. To this end, the server hosts an account manager and a session manager. The account manager manages accounts and associated account-based and user-specific permissions that define what actions any given authorized user for an account may perform with respect to a ?-station. The session manager controls (e.g., in real-time) interactions between a user and a ?-station, some interactions allowing a user to select a recipe based on wavefunction characterizations returned earlier in the same session.
    Type: Application
    Filed: June 29, 2020
    Publication date: September 23, 2021
    Inventors: Dana Zachary ANDERSON, Seth Charles CALIGA, Farhad MAJDETEIMOURI
  • Publication number: 20210255228
    Abstract: A 3D microwave sensor includes a cloud of particles, e.g., rubidium 87 atoms. A laser system produces: a first probe beam directed through the particle cloud along a first path; a second probe beam directed through the particle cloud along a second path that intersects the first path to define a Rydberg intersection; a first coupling beam that counterpropagates with respect to the first probe beam along the first path; and a second coupling beam that counterpropagates with respect to the second probe beam along the second path. A spectrum analyzer characterizes the microwave field strength at the Rydberg intersection. The laser beams can be steered to move the Rydberg intersection within the particle cloud to compile a microwave field strength distribution in the particle cloud.
    Type: Application
    Filed: March 30, 2021
    Publication date: August 19, 2021
    Inventors: Evan SALIM, Dana Zachary ANDERSON, Jayson DENNEY, Farhad MAJDETEIMOURI
  • Patent number: 11069790
    Abstract: The present invention provides an matter-wave transistor in which the flow of particles (e.g., atoms and molecules) through the transistor is a result of resonant tunneling from a source well, through a gate well and into a drain well (as opposed to being a result of collisions, as in a classical atomtronic transistor). The transistor current of matter-wave particles can be controlled as a function of the breadth of resonant tunneling conditions of the gate well. For example, the resonant tunneling conditions of a gate well that does not include a dipole-oscillating Bose-Einstein condensate (DOBEC) can be broadened by including a DOBEC in the gate well. Similarly, the breadth of resonant tunneling conditions of the gate well can be changed by changing the particle population of a DOBEC in the gate well.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: July 20, 2021
    Assignees: ColdQuanta, Inc., The Regents of the University of Colorado
    Inventors: Dana Zachary Anderson, Brad Anthony Dinardo
  • Patent number: 11002777
    Abstract: A microwave sensor includes a cloud of particles, e.g., Rubidium 87 atoms. A probe laser beam transitions ground-state particles in its path to an excited state. A set of one or more coupling laser beams causes excited particles to transition to a first Rydberg state so that particles in the intersection of the laser beams are in a dark superposition which is transparent to the probe laser beam so that a frequency spectrum of the probe laser beam shows a transmission peak at the laser frequency. A microwave lens focuses a microwave vector (e.g., a microwave signal) within the intersection, causing particles in the first Rydberg state to transition to a second Rydberg state, splitting the transmission peak into a pair of peaks. The intensity of the microwave vector can be calculated based on the frequency difference between the pair of peaks. The direction of the microwave vector can be determined from the location of the laser-beam intersection.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: May 11, 2021
    Assignees: ColdQuanta, Inc., The Regents of the University of Colorado
    Inventors: Evan Salim, Dana Zachary Anderson, Jayson Denney, Zorana Popovic, Farhad Majdeteimouri
  • Publication number: 20200402681
    Abstract: Atom-scale particles, e.g., neutral and charged atoms and molecules, are pre-cooled, e.g., using magneto-optical traps (MOTs), to below 100 ?K to yield cold particles. The cold particles are transported to a sensor cell which cools the cold particles to below 1 ?K using an optical trap; these particles are stored in a reservoir within an optical trap within the sensor cell so that they are readily available to replenish a sensor population of particles in quantum superposition. A baffle is disposed between the MOTs and the sensor cell to prevent near-resonant light leaking from the MOTs from entering the sensor cell (and exciting the ultra-cold particles in the reservoir). The transporting from the MOTs to the sensor cell is effected by moving optical fringes of optical lattices and guiding the cold particles attached to the fringes along a meandering path through the baffle and into the sensor cell.
    Type: Application
    Filed: July 20, 2020
    Publication date: December 24, 2020
    Inventors: Dana Zachary ANDERSON, Clifton Leon ANDERSON
  • Patent number: 10755831
    Abstract: Atom-scale particles, e.g., neutral and charged atoms and molecules, are pre-cooled, e.g., using magneto-optical traps (MOTs), to below 100 ?K to yield cold particles. The cold particles are transported to an atom-chip cell which cools the cold particles to below 1 ?K; these particles are stored in a reservoir within the atom-chip cell so that they are readily available to replenish a sensor population of particles in quantum superposition. A baffle is disposed between the MOTs and the atom-chip cell to prevent near-resonant light leaking from the MOTs from entering the atom-chip cell (and exciting the ultra-cold particles in the reservoir). The transporting from the MOTs to the atom-chip cell is effected by moving optical fringes of optical lattices and guiding the cold particles attached to the fringes along a meandering path through the baffle and into the atom-chip cell.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: August 25, 2020
    Assignee: ColdQuanta, Inc.
    Inventor: Dana Zachary Anderson
  • Publication number: 20200233025
    Abstract: A microwave sensor includes a cloud of particles, e.g., Rubidium 87 atoms. A probe laser beam transitions ground-state particles in its path to an excited state. A set of one or more coupling laser beams causes excited particles to transition to a first Rydberg state so that particles in the intersection of the laser beams are in a dark superposition which is transparent to the probe laser beam so that a frequency spectrum of the probe laser beam shows a transmission peak at the laser frequency. A microwave lens focuses a microwave vector (e.g., a microwave signal) within the intersection, causing particles in the first Rydberg state to transition to a second Rydberg state, splitting the transmission peak into a pair of peaks. The intensity of the microwave vector can be calculated based on the frequency difference between the pair of peaks. The direction of the microwave vector can be determined from the location of the laser-beam intersection.
    Type: Application
    Filed: September 19, 2019
    Publication date: July 23, 2020
    Inventors: Evan SALIM, Dana Zachary ANDERSON, Jayson DENNEY, Zoya POPOVIC, Farhad MAJDETEIMOURI
  • Publication number: 20200161446
    Abstract: The present invention provides an matter-wave transistor in which the flow of particles (e.g., atoms and molecules) through the transistor is a result of resonant tunneling from a source well, through a gate well and into a drain well (as opposed to being a result of collisions, as in a classical atomtronic transistor). The transistor current of matter-wave particles can be controlled as a function of the breadth of resonant tunneling conditions of the gate well. For example, the resonant tunneling conditions of a gate well that does not include a dipole-oscillating Bose-Einstein condensate (DOBEC) can be broadened by including a DOBEC in the gate well. Similarly, the breadth of resonant tunneling conditions of the gate well can be changed by changing the particle population of a DOBEC in the gate well.
    Type: Application
    Filed: November 18, 2019
    Publication date: May 21, 2020
    Inventors: Dana Zachary ANDERSON, Brad Anthony Dinardo
  • Publication number: 20200161016
    Abstract: Atom-scale particles, e.g., neutral and charged atoms and molecules, are pre-cooled, e.g., using magneto-optical traps (MOTs), to below 100 ?K to yield cold particles. The cold particles are transported to an atom-chip cell which cools the cold particles to below 1 ?K; these particles are stored in a reservoir within the atom-chip cell so that they are readily available to replenish a sensor population of particles in quantum superposition. A baffle is disposed between the MOTs and the atom-chip cell to prevent near-resonant light leaking from the MOTs from entering the atom-chip cell (and exciting the ultra-cold particles in the reservoir). The transporting from the MOTs to the atom-chip cell is effected by moving optical fringes of optical lattices and guiding the cold particles attached to the fringes along a meandering path through the baffle and into the atom-chip cell.
    Type: Application
    Filed: June 19, 2019
    Publication date: May 21, 2020
    Inventor: Dana Zachary ANDERSON