Patents by Inventor Dane Gillaspie

Dane Gillaspie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10690987
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel tungsten tantalum oxide (NiWTaO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: June 23, 2020
    Assignee: VIEW, INC.
    Inventors: Dane Gillaspie, Sridhar K. Kailasam, Robert T. Rozbicki
  • Patent number: 10684523
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel-tungsten-tin-oxide (NiWSnO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: June 16, 2020
    Assignee: VIEW, Inc.
    Inventors: Dane Gillaspie, Anshu A. Pradhan, Sridhar K. Kailasam
  • Publication number: 20200174332
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel-tungsten-niobium-oxide (NiWNbO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Application
    Filed: February 7, 2020
    Publication date: June 4, 2020
    Inventors: Dane Gillaspie, Sridhar K. Kailasam, Robert T. Rozbicki
  • Patent number: 10663830
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition. In certain embodiments, the device includes a counter electrode having an anodically coloring electrochromic material in combination with an additive.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: May 26, 2020
    Assignee: View, Inc.
    Inventors: Anshu A. Pradhan, Robert T. Rozbicki, Dane Gillaspie, Sridhar K. Kailasam
  • Publication number: 20200133088
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include a heterogeneous structure, for example a heterogeneous composition and/or morphology. Such heterogeneous anodically coloring layers can be used to better tune the properties of a device.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 30, 2020
    Inventors: Dane Gillaspie, Sridhar K. Kailasam, Robert T. Rozbicki
  • Patent number: 10591795
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include a heterogeneous structure, for example a heterogeneous composition and/or morphology. Such heterogeneous anodically coloring layers can be used to better tune the properties of a device.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: March 17, 2020
    Assignee: View, Inc.
    Inventors: Dane Gillaspie, Sridhar K. Kailasam, Robert T. Rozbicki
  • Patent number: 10585321
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel-tungsten-niobium-oxide (NiWNbO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: March 10, 2020
    Assignee: View, Inc.
    Inventors: Dane Gillaspie, Sridhar K. Kailasam, Robert T. Rozbicki
  • Patent number: 10345671
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel-tungsten-tin-oxide (NiWSnO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: July 9, 2019
    Assignee: View, Inc.
    Inventors: Dane Gillaspie, Anshu A. Pradhan, Sridhar K. Kailasam
  • Publication number: 20190187531
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition. In certain embodiments, the device includes a counter electrode having an anodically coloring electrochromic material in combination with an additive.
    Type: Application
    Filed: February 25, 2019
    Publication date: June 20, 2019
    Inventors: Anshu A. Pradhan, Robert T. Rozbicki, Dane Gillaspie, Sridhar K. Kailasam
  • Publication number: 20190171079
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel-tungsten-niobium-oxide (NiWNbO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Application
    Filed: January 17, 2019
    Publication date: June 6, 2019
    Inventors: Dane Gillaspie, Sridhar K. Kailasam, Robert T. Rozbicki
  • Patent number: 10288969
    Abstract: Electrochromic devices and methods may employ the addition of a defect-mitigating insulating layer which prevents electronically conducting layers and/or electrochromically active layers from contacting layers of the opposite polarity and creating a short circuit in regions where defects form. In some embodiments, an encapsulating layer is provided to encapsulate particles and prevent them from ejecting from the device stack and risking a short circuit when subsequent layers are deposited. The insulating layer may have an electronic resistivity of between about 1 and 108 Ohm-cm. In some embodiments, the insulating layer contains one or more of the following metal oxides: aluminum oxide, zinc oxide, tin oxide, silicon aluminum oxide, cerium oxide, tungsten oxide, nickel tungsten oxide, and oxidized indium tin oxide. Carbides, nitrides, oxynitrides, and oxycarbides may also be used.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: May 14, 2019
    Assignee: View, Inc.
    Inventors: Sridhar K. Kailasam, Robin Friedman, Dane Gillaspie, Anshu A. Pradhan, Robert Rozbicki, Disha Mehtani
  • Publication number: 20190113819
    Abstract: Various embodiments herein relate to electrochromic devices, methods of fabricating electrochromic 116 devices, and apparatus for fabricating electrochromic 100 devices. In a number of cases, the electrochromic device may be fabricated to include a particular counter electrode material. The counter electrode material may include a base anodically coloring material. The counter electrode material may further include one or more halogens. The counter electrode material may also include one or more additives.
    Type: Application
    Filed: March 24, 2017
    Publication date: April 18, 2019
    Inventors: Anshu A. Pradhan, Robert T. Rozbicki, Dane Gillaspie, Sridhar K. Kailasam
  • Patent number: 10261381
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition. In certain embodiments, the device includes a counter electrode having an anodically coloring electrochromic material in combination with an additive.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: April 16, 2019
    Assignee: View, Inc.
    Inventors: Anshu A. Pradhan, Robert T. Rozbicki, Dane Gillaspie, Sridhar K. Kailasam
  • Publication number: 20190107763
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel-tungsten-tin-oxide (NiWSnO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Application
    Filed: November 29, 2018
    Publication date: April 11, 2019
    Inventors: Dane Gillaspie, Anshu A. Pradhan, Sridhar K. Kailasam
  • Publication number: 20190107764
    Abstract: Electrochromic devices and methods may employ the addition of a defect-mitigating insulating layer which prevents electronically conducting layers and/or electrochromically active layers from contacting layers of the opposite polarity and creating a short circuit in regions where defects form. In some embodiments, an encapsulating layer is provided to encapsulate particles and prevent them from ejecting from the device stack and risking a short circuit when subsequent layers are deposited. The insulating layer may have an electronic resistivity of between about 1 and 108 Ohm-cm. In some embodiments, the insulating layer contains one or more of the following metal oxides: aluminum oxide, zinc oxide, tin oxide, silicon aluminum oxide, cerium oxide, tungsten oxide, nickel tungsten oxide, and oxidized indium tin oxide. Carbides, nitrides, oxynitrides, and oxycarbides may also be used.
    Type: Application
    Filed: December 4, 2018
    Publication date: April 11, 2019
    Inventors: Sridhar K. Kailasam, Robin Friedman, Dane Gillaspie, Anshu A. Pradhan, Robert Rozbicki, Disha Mehtani
  • Patent number: 10228601
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel-tungsten-niobium-oxide (NiWNbO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: March 12, 2019
    Assignee: View, Inc.
    Inventors: Dane Gillaspie, Sridhar K. Kailasam, Robert T. Rozbicki
  • Publication number: 20190064623
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel tungsten tantalum oxide (NiWTaO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Application
    Filed: October 23, 2018
    Publication date: February 28, 2019
    Inventors: Dane Gillaspie, Sridhar K. Kailasam, Robert T. Rozbicki
  • Patent number: 10156762
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel tungsten tantalum oxide (NiWTaO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: December 18, 2018
    Assignee: View, Inc.
    Inventors: Dane Gillaspie, Sridhar K. Kailasam, Robert T. Rozbicki
  • Publication number: 20170371221
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel tungsten tantalum oxide (NiWTaO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Application
    Filed: November 20, 2015
    Publication date: December 28, 2017
    Inventors: Dane Gillaspie, Sridhar K. Kailasam, Robert T. Rozbicki
  • Publication number: 20170357135
    Abstract: The embodiments herein relate to electrochromic stacks, electrochromic devices, and methods and apparatus for making such stacks and devices. In various embodiments, an anodically coloring layer in an electrochromic stack or device is fabricated to include nickel-tungsten-niobium-oxide (NiWNbO). This material is particularly beneficial in that it is very transparent in its clear state.
    Type: Application
    Filed: November 19, 2015
    Publication date: December 14, 2017
    Inventors: Dane Gillaspie, Sridhar K. Kailasam, Robert T. Rozbicki