Patents by Inventor Danh H. Nguyen

Danh H. Nguyen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10985861
    Abstract: A reactive jamming software defined radio (SDR) apparatus to target Frequency Hopping Spread-Spectrum (FHSS) signals includes a peripheral module for SDR processing; a reactive jamming hardware IP core that implements time-sensitive operations on a field programmable gate array (FGPA); and a host computer that implements non-time-critical operations, such as jammer configuration, logging, and strategy composition.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: April 20, 2021
    Assignee: Drexel University
    Inventors: Danh H. Nguyen, Marko Jacovic, Cem Sahin, Kapil R. Dandekar
  • Patent number: 10694526
    Abstract: A learning protocol for distributed antenna state selection in directional cognitive small-cell networks is described. Antenna state selection is formulated as a nonstationary multi-armed bandit problem and an effective solution is provided based on the adaptive pursuit method from reinforcement learning. A cognitive small cell testbed, called WARP-TDMAC, provides a useful software-defined radio package to explore the usefulness of compact, electronically reconfigurable antennas in dense small-cell configurations. A practical implementation of the adaptive pursuit method provides a robust distributed antenna state selection protocol for cognitive small-cell networks. Test results confirm that directionality provides significant advantages over omnidirectional transmission which suffers high throughput reduction and complete link outages at above-average jamming or cross-link interference power.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: June 23, 2020
    Assignees: Drexel University, Univeristy of Oulu
    Inventors: Danh H. Nguyen, Anton Paatelma, Harri Saarnisaari, Nagarajan Kandasamy, Kapil R. Dandekar
  • Patent number: 10515483
    Abstract: Presenting a visualization of antenna radiation patterns may include sending a request to a server for up-to-date information regarding an antenna mode; receiving the request at the server and reading a register value for the antenna mode; responding, by the server, with updated antenna mode information; and overlaying antenna radiation patterns on an image based on the mode information.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: December 24, 2019
    Assignee: Drexel University
    Inventors: Kapil R. Dandekar, Cem Sahin, Logan J. Henderson, Danh H. Nguyen, James J. Chacko, Xaime Rivas Rey
  • Publication number: 20190268087
    Abstract: A reactive jamming software defined radio (SDR) apparatus to target Frequency Hopping Spread-Spectrum (FHSS) signals includes a peripheral module for SDR processing; a reactive jamming hardware IP core that implements time-sensitive operations on a field programmable gate array (FGPA); and a host computer that implements non-time-critical operations, such as jammer configuration, logging, and strategy composition.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 29, 2019
    Applicant: Drexel University
    Inventors: Danh H. Nguyen, Marko Jacovic, Cem Sahin, Kapil R. Dandekar
  • Publication number: 20180350149
    Abstract: Presenting a visualization of antenna radiation patterns may include sending a request to a server for up-to-date information regarding an antenna mode; receiving the request at the server and reading a register value for the antenna mode; responding, by the server, with updated antenna mode information; and overlaying antenna radiation patterns on an image based on the mode information.
    Type: Application
    Filed: December 1, 2016
    Publication date: December 6, 2018
    Applicant: Drexel University
    Inventors: Kapil R. Dandekar, Cem Sahin, Logan J. Henderson, Danh H. Nguyen, James J. Chacko, Xaime Rivas Rey
  • Publication number: 20180098330
    Abstract: A learning protocol for distributed antenna state selection in directional cognitive small-cell networks is described. Antenna state selection is formulated as a nonstationary multi-armed bandit problem and an effective solution is provided based on the adaptive pursuit method from reinforcement learning. A cognitive small cell testbed, called WARP-TDMAC, provides a useful software-defined radio package to explore the usefulness of compact, electronically reconfigurable antennas in dense small-cell configurations. A practical implementation of the adaptive pursuit method provides a robust distributed antenna state selection protocol for cognitive small-cell networks. Test results confirm that directionality provides significant advantages over omnidirectional transmission which suffers high throughput reduction and complete link outages at above-average jamming or cross-link interference power.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 5, 2018
    Inventors: Danh H. Nguyen, Anton Paatelma, Harri Saarnisaari, Nagarajan Kandasamy, Kapil R. Dandekar
  • Patent number: 9531497
    Abstract: A real-time capable, protocol-aware, reactive jammer using GNU Radio and the USRP N210 software-defined radio (SDR) platform detects in-flight packets of known wireless standards and reacts to jam them—within 80 ns of detecting the signal. A reactive jamming device is achieved using low-cost, readily available hardware. The real-time reactive jamming device includes a real-time signal detector that detects an event in received packets in the wireless network, a reactive jamming device that sends a triggering signal when the event is detected, and a jamming generator responsive to the triggering signal to generate a jamming signal that has a user-defined delay so as to enable jamming of specific locations in received packets in the wireless network. The effects of three types of jamming on WiFi (802.11g) and mobile WiMAX (802.16e) networks are demonstrated and jamming performances are quantified by measuring the network throughput using the iperf software tool.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: December 27, 2016
    Assignee: Drexel University
    Inventors: Boris Shishkin, Danh H. Nguyen, Cem Sahin, Kapil R. Dandekar, Nagarajan Kandasamy, David J. Dorsey
  • Publication number: 20160344510
    Abstract: A real-time capable, protocol-aware, reactive jammer using GNU Radio and the USRP N210 software-defined radio (SDR) platform detects in-flight packets of known wireless standards and reacts to jam them—within 80 ns of detecting the signal. A reactive jamming device is achieved using low-cost, readily available hardware. The real-time reactive jamming device includes a real-time signal detector that detects an event in received packets in the wireless network, a reactive jamming device that sends a triggering signal when the event is detected, and a jamming generator responsive to the triggering signal to generate a jamming signal that has a user-defined delay so as to enable jamming of specific locations in received packets in the wireless network. The effects of three types of jamming on WiFi (802.11g) and mobile WiMAX (802.16e) networks are demonstrated and jamming performances are quantified by measuring the network throughput using the iperf software tool.
    Type: Application
    Filed: May 29, 2014
    Publication date: November 24, 2016
    Inventors: Boris Shishkin, Danh H. Nguyen, Cem Sahin, Kapil R. Dandekar, Nagarajan Kandasamy, David J. Dorsey