Patents by Inventor Daniël Nelis

Daniël Nelis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11581529
    Abstract: A submicron sized Si based powder having an average primary particle size between 20 nm and 200 nm, wherein the powder has a surface layer comprising SiOx, with 0<x<2, the surface layer having an average thickness between 0.5 nm and 10 nm, and wherein the powder has a total oxygen content equal or less than 3% by weight at room temperature. The method for making the powder comprises a step where a Si precursor is vaporized in a gas stream at high temperature, after which the gas stream is quenched to obtain Si particles, and the Si particles are quenched at low temperature in an oxygen containing gas.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: February 14, 2023
    Assignee: Umicore
    Inventors: Jean Scoyer, Stijn Put, Daniël Nelis, Kris Driesen
  • Patent number: 11502285
    Abstract: A rechargeable electrochemical cell comprising a negative electrode and a positive electrode is described. The positive electrode comprises a product having as overall formula Lip(NixMnyCozMmAlnAa)O2±b, wherein M signifies one or more elements from the group Mg, Ti, Cr, V and Fe, wherein A signifies one or more elements from the group F, C, Cl, S, Zr, Ba, Y, Ca, B, Sn, Sb, Na and Zn, and wherein 0.9<(x+y+z+m+n+a)<1.1, b<0.02, 0.9<p<1.110, 0.30<x<0.95, (y+z)?0.09, 0?m?0.05, 0?a?0.05, and 0?n?0.15. The negative electrode comprises composite particles, wherein the composite particles comprise silicon-based domains in a matrix material. The individual silicon-based domains are either free silicon-based domains that are not or not completely embedded in the matrix or are fully embedded silicon-based domains that are completely surrounded by the matrix material.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: November 15, 2022
    Assignees: UMICORE, UMICORE KOREA LTD.
    Inventors: Jean-Sébastien Bridel, Stijn Put, Dongjoon Ihm, Daniel Nelis
  • Patent number: 11476461
    Abstract: A crystalline precursor compound for manufacturing a lithium transition metal based oxide powder usable as an active positive electrode material in lithium-ion batteries, the precursor having a general formula M(O)x(OH)2-x-y(CO3)y, with 0<x?1, 0<y<0.03 and M=NiaMnbCocAd. A being a dopant, with 0.30?a<0.90, 0.10?b<0.40, 0.10?c<0.40, d<0.05 and a+b+c+d=1, the precursor having a Na content less than 200 ppm, a S content less than 250 ppm, the precursor having a specific surface area with a BET value expressed in m2/g and a tap density TD expressed in g/cm3, with a ratio BET/TD>30.104 cm5/g2.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: October 18, 2022
    Assignees: UMICORE, UMICORE KOREA, LTD.
    Inventors: Jens Paulsen, Daniël Nelis, Jin Hu, Liang Zhu, Eric Robert
  • Patent number: 11401167
    Abstract: This invention relates to an industrial process of manufacturing hydroxide precursor for lithium transition metal oxide used in secondary lithium ion batteries. More particularly, this process utilizes highly concentrated nitrate salts and is designed to mitigate waste production.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: August 2, 2022
    Assignees: UMICORE, UMICORE KOREA, LTD.
    Inventors: Jens Paulsen, Eric Robert, Dirk Vanhoutte, Daniël Nelis, Randy De Palma, Dae-Hyun Kim
  • Patent number: 11380882
    Abstract: A method for producing a M-carbonate precursor of a Li-M oxide cathode material in a continuous reactor, wherein M=NixMnyCozAn, A being a dopant, with x>0, y>0, 0?z?0.35, 0?n?0.02 and x+y+z+n=1, the method comprising the steps of: —providing a feed solution comprising Ni-, Mn-, Co- and A-ions, and having a molar metal content M? feed, —providing an ionic solution comprising either one or both of a carbonate and a bicarbonate solution, the ionic solution further comprising either one or both of Na- and K-ions, —providing a slurry comprising seeds comprising M?-ions and having a molar metal content M? seeds, wherein M?=Nix?Mny?Coz?A?n?, A? being a dopant, with 0?x??1, 0?y??1, 0?z??1, 0?n??1 and x?+y?+z?+n?=1, and wherein the molar ratio M? seeds/M? feed is between 0.001 and 0.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: July 5, 2022
    Assignees: UMICORE, UMICORE KOREA LTD.
    Inventors: Jin Hu, HeonPyo Hong, Jens Paulsen, JinDoo Oh, Daniël Nelis, Eric Robert
  • Publication number: 20210159481
    Abstract: A rechargeable electrochemical cell comprising a negative electrode and a positive electrode is described. The positive electrode comprises a product having as overall formula Lip(NixMnyCozMmAlnAa)O2±b, wherein M signifies one or more elements from the group Mg, Ti, Cr, V and Fe, wherein A signifies one or more elements from the group F, C, Cl, S, Zr, Ba, Y, Ca, B, Sn, Sb, Na and Zn, and wherein 0.9<(x+y+z+m+n+a)<1.1, b<0.02, 0.9<p<1.110, 0.30<x<0.95, (y+z)?0.09, 0?m?0.05, 0?a?0.05, and 0?n?0.15. The negative electrode comprises composite particles, wherein the composite particles comprise silicon-based domains in a matrix material. The individual silicon-based domains are either free silicon-based domains that are not or not completely embedded in the matrix or are fully embedded silicon-based domains that are completely surrounded by the matrix material.
    Type: Application
    Filed: September 11, 2017
    Publication date: May 27, 2021
    Inventors: Jean-Sébastien BRIDEL, Stijn PUT, Dongjoon IHM, Daniël NELIS
  • Publication number: 20210036315
    Abstract: Silicon-based powder for use in the negative electrode of a battery, whereby the silicon-based powder comprises silicon-based particles, whereby the silicon-based particles have a number-based particle size distribution having a d50, whereby the particle size of a particle is considered to be the largest dimension of said particle, whereby less than 8.0% of the particles have a size which is larger than twice the d50. Such a silicon based powder may be embedded in a matrix to form an active material powder. Preferably d50<150 nm and d10>10 nm. The cycle efficiency of a negative electrode of a battery, made using such a powder, is much improved.
    Type: Application
    Filed: February 5, 2019
    Publication date: February 4, 2021
    Inventors: Stijn PUT, Nicolas MARX, Jan GILLEIR, Daniël NELIS
  • Publication number: 20200321609
    Abstract: A lithium ion battery comprising a negative electrode and an electrolyte, whereby the negative electrode comprises composite particles, whereby the composite particles comprise silicon-based domains, whereby the composite particles comprise a matrix material in which the silicon-based domains are embedded, whereby the composite particles and the electrolyte have an interface, whereby at this interface there is a SEI layer, characterized in that the SEI layer comprises one or more compounds having carbon-carbon chemical bonds and the SEI layer comprises one or more compounds having carbon-oxygen chemical bonds, whereby a ratio, defined as the area of a first peak divided by the area of a second peak, is at least 1.30, whereby the first peak and second peak are peaks in an X-ray photoelectron spectroscopy measurement of the SEI, whereby the first peak represents C—C chemical bonds and whereby the second peak represents C—O chemical bonds.
    Type: Application
    Filed: September 12, 2018
    Publication date: October 8, 2020
    Inventors: Stijn PUT, Daniël NELIS, Jean-Sébastien BRIDEL, Jeong-Rae KIM
  • Publication number: 20200266429
    Abstract: A submicron sized Si based powder having an average primary particle size between 20 nm and 200 nm, wherein the powder has a surface layer comprising SiOx, with 0<x<2, the surface layer having an average thickness between 0.5 nm and 10 nm, and wherein the powder has a total oxygen content equal or less than 3% by weight at room temperature. The method for making the powder comprises a step where a Si precursor is vaporized in a gas stream at high temperature, after which the gas stream is quenched to obtain Si particles, and the Si particles are quenched at low temperature in an oxygen containing gas.
    Type: Application
    Filed: May 6, 2020
    Publication date: August 20, 2020
    Inventors: Jean Scoyer, Stijn Put, Daniël Nelis, Kris Driesen
  • Publication number: 20200031682
    Abstract: This invention relates to an industrial process of manufacturing hydroxide precursor for lithium transition metal oxide used in secondary lithium ion batteries. More particularly, this process utilizes highly concentrated nitrate salts and is designed to mitigate waste production.
    Type: Application
    Filed: March 15, 2018
    Publication date: January 30, 2020
    Inventors: Jens PAULSEN, Eric ROBERT, Dirk VANHOUTTE, Daniël NELIS, Randy DE PALMA, Dae-Hyun KIM
  • Patent number: 10547056
    Abstract: A particulate precursor compound for manufacturing a lithium transition metal (M)-oxide powder for use as an active positive electrode material in lithium-ion batteries, wherein (M) is NixMnyCozAv, A being a dopant, wherein 0.33?x?0.60, 0.20?y?0.33, and 0.20?z?0.33, v?0.05, and x+y+z+v=1, the precursor comprising Ni, Mn and Co in a molar ratio x:y:z and having a specific surface area BET in m2/g and a sulfur content S expressed in wt %, wherein formula (I).
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: January 28, 2020
    Assignees: UMICORE, UMICORE KOREA, LTD.
    Inventors: Liang Zhu, Randy De Palma, Hyo Sun Ahn, Sung Jun Cho, Daniël Nelis, Kris Driesen
  • Publication number: 20200006769
    Abstract: A crystalline precursor compound for manufacturing a lithium transition metal based oxide powder usable as an active positive electrode material in lithium-ion batteries, the precursor having a general formula M(O)x(OH)2-x-y(CO3)y, with 0<x?1, 0<y<0.03 and M=NiaMnbCocAd. A being a dopant, with 0.30?a<0.90, 0.10?b<0.40, 0.10?c<0.40, d<0.05 and a+b+c+d=1, the precursor having a Na content less than 200 ppm, a S content less than 250 ppm, the precursor having a specific surface area with a BET value expressed in m2/g and a tap density TD expressed in g/cm3, with a ratio BET/TD>30.104 cm5/g2.
    Type: Application
    Filed: March 14, 2017
    Publication date: January 2, 2020
    Inventors: Jens PAULSEN, Daniël NELIS, Jin HU, Liang ZHU, Eric ROBERT
  • Publication number: 20190109326
    Abstract: A submicron sized Si based powder having an average primary particle size between 20 nm and 200 nm, wherein the powder has a surface layer comprising SiOx, with 0<x<2, the surface layer having an average thickness between 0.5 nm and 10 nm, and wherein the powder has a total oxygen content equal or less than 3% by weight at room temperature. The method for making the powder comprises a step where a Si precursor is vaporized in a gas stream at high temperature, after which the gas stream is quenched to obtain Si particles, and the Si particles are quenched at low temperature in an oxygen containing gas.
    Type: Application
    Filed: December 6, 2018
    Publication date: April 11, 2019
    Inventors: Jean Scoyer, Stijn Put, Daniël Nelis, Kris Driesen
  • Patent number: 10181600
    Abstract: A submicron sized Si based powder having an average primary particle size between 20 nm and 200 nm, wherein the powder has a surface layer comprising SiOx, with 0<x<2, the surface layer having an average thickness between 0.5 nm and 10 nm, and wherein the powder has a total oxygen content equal or less than 3% by weight at room temperature. The method for making the powder comprises a step where a Si precursor is vaporized in a gas stream at high temperature, after which the gas stream is quenched to obtain Si particles, and the Si particles are quenched at low temperature in an oxygen containing gas.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: January 15, 2019
    Assignee: UMICORE
    Inventors: Jean Scoyer, Stijn Put, Daniël Nelis, Kris Driesen
  • Publication number: 20180269477
    Abstract: A particulate precursor compound for manufacturing a lithium transition metal (M)-oxide powder for use as an active positive electrode material in lithium-ion batteries, wherein (M) is NixMnyCozAv, A being a dopant, wherein 0.33?x?0.60, 0.20?y?0.33, and 0.20?z?0.33, v?0.05, and x+y+z+v=1, the precursor comprising Ni, Mn and Co in a molar ratio x:y:z and having a specific surface area BET in m2/g and a sulfur content S expressed in wt %, wherein formula (I).
    Type: Application
    Filed: September 23, 2016
    Publication date: September 20, 2018
    Inventors: Liang ZHU, Randy DE PALMA, Hyo Sun AHN, Sung Jun CHO, Daniël NELIS, Kris DRIESEN
  • Publication number: 20170309894
    Abstract: A method for producing a M-carbonate precursor of a Li-M oxide cathode material in a continuous reactor, wherein M=NixMnyCozAn, A being a dopant, with x>0, y>0, 0?z?0.35, 0?n?0.02 and x+y+z+n=1, the method comprising the steps of: —providing a feed solution comprising Ni-, Mn-, Co- and A-ions, and having a molar metal content M? feed, —providing an ionic solution comprising either one or both of a carbonate and a bicarbonate solution, the ionic solution further comprising either one or both of Na- and K-ions, —providing a slurry comprising seeds comprising M?-ions and having a molar metal content M? seeds, wherein M?=Nix?Mny?Coz?A?n?, A? being a dopant, with 0?x??1, 0?y??1, 0?z??1, 0?n??1 and x?+y?+z?+n?=1, and wherein the molar ratio M? seeds/M? feed is between 0.001 and 0.
    Type: Application
    Filed: September 30, 2015
    Publication date: October 26, 2017
    Inventors: Jin HU, HeonPyo HONG, Jens PAULSEN, JinDoo OH, Daniël NELIS, Eric ROBERT
  • Publication number: 20160141610
    Abstract: A submicron sized Si based powder having an average primary particle size between 20 nm and 200 nm, wherein the powder has a surface layer comprising SiOx, with 0<x<2, the surface layer having an average thickness between 0.5 nm and 10 nm, and wherein the powder has a total oxygen content equal or less than 3% by weight at room temperature. The method for making the powder comprises a step where a Si precursor is vaporized in a gas stream at high temperature, after which the gas stream is quenched to obtain Si particles, and the Si particles are quenched at low temperature in an oxygen containing gas.
    Type: Application
    Filed: January 21, 2016
    Publication date: May 19, 2016
    Inventors: Jean SCOYER, Stijn PUT, Daniel NELIS, Kris DRIESEN
  • Publication number: 20130136986
    Abstract: A submicron sized Si based powder having an average primary particle size between 20 nm and 200 nm, wherein the powder has a surface layer comprising SiOx, with 0<x<2, the surface layer having an average thickness between 0.5 nm and 10 nm, and wherein the powder has a total oxygen content equal or less than 3% by weight at room temperature. The method for making the powder comprises a step where a Si precursor is vaporized in a gas stream at high temperature, after which the gas stream is quenched to obtain Si particles, and the Si particles are quenched at low temperature in an oxygen containing gas.
    Type: Application
    Filed: June 22, 2011
    Publication date: May 30, 2013
    Inventors: Jean Scoyer, Stijn Put, Daniël Nelis, Kris Driesen
  • Publication number: 20110045745
    Abstract: The present invention relates to doped ceria (CeO2) abrasive particles, having an essentially octahedral morphology. Such abrasives are used in water-based slurries for Chemical Mechanical Polishing (CMP) of subrates such as silicon wafers. The invention more particularly concerns yttrium-doped ceria particles having a specific surface area of 10 to 120 m2/g, characterized in that at least 95 wt %, preferably at least 99 wt %, of the particles are mono-crystalline and in that the particles' surfaces consist of more than 70%, preferably of more than 80%, of planes parallel to {111} planes. A novel gas phase process for synthesizing this product is also disclosed, comprising the steps of providing a hot gas stream, —and, introducing into said gas stream a cerium-bearing reactant, a dopant-bearing reactant, and an oxygen-bearing reactant, —the temperature of said gas stream being chosen so as to atomize said reactant, the reactant being selected so as to form, upon cooling, doped ceria particles.
    Type: Application
    Filed: February 3, 2009
    Publication date: February 24, 2011
    Applicant: UMICORE
    Inventors: Joke De Messemaeker, Stijn Put, Dirk Van-Genechten, Yves Van Rompaey, Daniël Nelis, Yvan Strauven, Gustaaf Van Tendeloo