Patents by Inventor Dania I. Ghantous

Dania I. Ghantous has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7198869
    Abstract: Improved batteries described herein generally comprise an electrolyte having lithium ions and a cathode comprising submicron metal vanadium oxide particles. In some embodiments, the battery demonstrate an accessible current capacity of at least about 220 mAh/g when pulsed in groups of four constant energy pulses at a current density of 30 mA/cm2 to deliver 50 Joules per pulse. The four pulses of a pulse train are separated by 15 seconds of rest between each pulse, and there are 6 days between pulse groups, upon discharge down to a pulse discharge voltage of 2 V. In further embodiments, the batteries have an average internal electrical resistance of no more than 0.2 Ohms at a current density of at least about 30 mA/cm2. Furthermore, the batteries can have a current capability of at least about 0.4 amps per cubic centimeter battery volume.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: April 3, 2007
    Assignee: Greatbatch, Inc.
    Inventors: Dania I. Ghantous, Allison A. Pinoli
  • Publication number: 20040121195
    Abstract: Improved batteries described herein generally comprise an electrolyte having lithium ions and a cathode comprising submicron metal vanadium oxide particles. In some embodiments, the battery demonstrate an accessible current capacity of at least about 220 mAh/g when pulsed in groups of four constant energy pulses at a current density of 30 mA/cm2 to deliver 50 Joules per pulse. The four pulses of a pulse train are separated by 15 seconds of rest between each pulse, and there are 6 days between pulse groups, upon discharge down to a pulse discharge voltage of 2 V. In further embodiments, the batteries have an average internal electrical resistance of no more than 0.2 Ohms at a current density of at least about 30 mA/cm2. Furthermore, the batteries can have a current capability of at least about 0.4 amps per cubic centimeter battery volume.
    Type: Application
    Filed: July 22, 2003
    Publication date: June 24, 2004
    Inventors: Dania I. Ghantous, Allison A. Pinoli
  • Publication number: 20030077513
    Abstract: Improved high rate batteries based on silver vanadium oxide yield improved pulsed performance. In particular, batteries comprise an electrolyte having lithium ions and a cathode comprising silver vanadium oxide. Improved batteries have a pulsed specific energy of at least about 575 mWh/g when pulsed in groups of four-10 second pulses at a current density of 25 mA/cm2 spaced by 15 seconds between pulses and with 30 minutes between pulse groups down to a discharge voltage of 1.5 volts. In addition, improved batteries can achieve high maximum specific powers, high current densities and no voltage delay in pulsed operation. The batteries are particularly suitable for use in implantable medical devices, such as, defibrillators, pacemakers or combinations thereof. Improved processing approaches are described.
    Type: Application
    Filed: November 25, 2002
    Publication date: April 24, 2003
    Applicant: NanoGram Corporation
    Inventors: Dania I. Ghantous, Benjamin Chaloner-Gill, Shivkumar Chiruvolu, Devendra R. Banfol, William E. McGovern, Ronald M. Cornell, Khanh Hoang, Allison A. Pinoli
  • Patent number: 6503646
    Abstract: Improved high rate batteries based on silver vanadium oxide yield improved pulsed performance. In particular, batteries comprise an electrolyte having lithium ions and a cathode comprising silver vanadium oxide. Improved batteries have a pulsed specific energy of at least about 575 mWh/g when pulsed in groups of four-10 second pulses at a current density of 25 mA/cm2 spaced by 15 seconds between pulses and with 30 minutes between pulse groups down to a discharge voltage of 1.5 volts. In addition, improved batteries can achieve high maximum specific powers, high current densities and no voltage delay in pulsed operation. The batteries are particularly suitable for use in implantable medical devices, such as, defibrillators, pacemakers or combinations thereof. Improved processing approaches are described.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: January 7, 2003
    Assignee: NanoGram Corporation
    Inventors: Dania I. Ghantous, Benjamin Chaloner-Gill, Shivkumar Chiruvolo, Devendra R. Banfol, William E. McGovern, Ronald M. Cornell, Khanh Hoang, Allison A. Pinoli