Patents by Inventor Danica W. Marsden

Danica W. Marsden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11856871
    Abstract: Systems and methods for fabricating a superconducting integrated circuit that includes wiring layers comprising low-noise material are described. A superconducting integrated circuit can be implemented in a computing system that includes a quantum processor. Such a superconducting integrated circuit includes a first set of one or more wiring layers that form a noise-susceptible superconducting device that can decrease processor when exposed to noise. The superconducting integrated circuit can further include a second set of one or more wiring layers that form a superconducting device that is less susceptible to noise. Fabricating a superconducting device that contains low-noise material can include depositing and patterning a wiring layer comprising a first material that is superconductive in a respective range of temperatures and depositing and patterning a different wiring layer comprising a second material that is superconductive in a respective range of temperatures.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: December 26, 2023
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Trevor M. Lanting, Danica W. Marsden, Byong Hyop Oh, Eric G. Ladizinsky, Shuiyuan Huang, J. Jason Yao, Douglas P. Stadtler
  • Publication number: 20220263007
    Abstract: Systems and methods for fabricating a superconducting integrated circuit that includes wiring layers comprising low-noise material are described. A superconducting integrated circuit can be implemented in a computing system that includes a quantum processor. Such a superconducting integrated circuit includes a first set of one or more wiring layers that form a noise-susceptible superconducting device that can decrease processor when exposed to noise. The superconducting integrated circuit can further include a second set of one or more wiring layers that form a superconducting device that is less susceptible to noise. Fabricating a superconducting device that contains low-noise material can include depositing and patterning a wiring layer comprising a first material that is superconductive in a respective range of temperatures and depositing and patterning a different wiring layer comprising a second material that is superconductive in a respective range of temperatures.
    Type: Application
    Filed: February 25, 2022
    Publication date: August 18, 2022
    Inventors: Trevor M. Lanting, Danica W. Marsden, Byong Hyop Oh, Eric G. Ladizinsky, Shuiyuan Huang, J. Jason Yao, Douglas P. Stadtler
  • Publication number: 20200152851
    Abstract: Systems and methods for fabricating a superconducting integrated circuit that includes wiring layers comprising low-noise material are described. A superconducting integrated circuit can be implemented in a computing system that includes a quantum processor. Such a superconducting integrated circuit includes a first set of one or more wiring layers that form a noise-susceptible superconducting device that can decrease processor when exposed to noise. The superconducting integrated circuit can further include a second set of one or more wiring layers that form a superconducting device that is less susceptible to noise. Fabricating a superconducting device that contains low-noise material can include depositing and patterning a wiring layer comprising a first material that is superconductive in a respective range of temperatures and depositing and patterning a different wiring layer comprising a second material that is superconductive in a respective range of temperatures.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 14, 2020
    Inventors: Trevor M. Lanting, Danica W. Marsden, Byong Hyop Oh, Eric G. Ladizinsky, Shuiyuan Huang, J. Jason Yao, Douglas P. Stadtler