Patents by Inventor Daniel A. Buttry

Daniel A. Buttry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220099671
    Abstract: The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
    Type: Application
    Filed: May 12, 2021
    Publication date: March 31, 2022
    Applicant: Accelerate Diagnostics, Inc.
    Inventors: David A. Goldberg, David C. Howson, Steven W. Metzger, Daniel A. Buttry, Steven Scott Saavedra
  • Patent number: 11054420
    Abstract: The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: July 6, 2021
    Assignee: Accelerate Diagnostics, Inc.
    Inventors: David A. Goldberg, David C. Howson, Steven W. Metzger, Daniel A. Buttry, Steven Scott Saavedra
  • Patent number: 10700382
    Abstract: Ionic liquids suitable for use in magnesium batteries are disclosed. In an exemplary embodiment, a rechargeable magnesium battery comprises an anode electrode, a cathode electrode, and a chelating ionic liquid solution in contact therewith. The chelating ionic liquid may comprise at least one cation, at least one anion, and at least one soluble, magnesium salt. The magnesium salt may comprise MgX2, wherein X comprises at least one of Cl—, Br—, I—, TFSI—, FSI—, ClO4—, BF4—, PF6—, RSO3— (wherein R consists of at least one of an alkyl or aryl group), RCO2— (wherein R consists of at least one of an alkyl or aryl group), alkyl borides, alkyl borates, AlCl4—, AlXaRb— (wherein the sum of subscripts a and b is 4, X consists of a halide, and R consists of at least one of an alkyl or aryl group), carboranes, or hexamethyldisilazide.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: June 30, 2020
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Daniel A. Buttry, Tylan S. Watkins, Joseph Rheinhardt
  • Publication number: 20190074548
    Abstract: Ionic liquids suitable for use in magnesium batteries are disclosed. In an exemplary embodiment, a rechargeable magnesium battery comprises an anode electrode, a cathode electrode, and a chelating ionic liquid solution in contact therewith. The chelating ionic liquid may comprise at least one cation, at least one anion, and at least one soluble, magnesium salt. The magnesium salt may comprise MgX2, wherein X comprises at least one of Cl—, Br—, I—, TFSI—, FSI—, ClO4—, BF4—, PF6—, RSO3— (wherein R consists of at least one of an alkyl or aryl group), RCO2— (wherein R consists of at least one of an alkyl or aryl group), alkyl borides, alkyl borates, AlCl4—, AlXaRb— (wherein the sum of subscripts a and b is 4, X consists of a halide, and R consists of at least one of an alkyl or aryl group), carboranes, or hexamethyldisilazide.
    Type: Application
    Filed: November 6, 2018
    Publication date: March 7, 2019
    Inventors: Daniel A. Buttry, Tylan S. Watkins, Joseph Rheinhardt
  • Patent number: 10147971
    Abstract: Ionic liquids suitable for use in magnesium batteries are disclosed. In an exemplary embodiment, a rechargeable magnesium battery comprises an anode electrode, a cathode electrode, and a chelating ionic liquid solution in contact therewith. The chelating ionic liquid may comprise at least one cation, at least one anion, and at least one soluble, magnesium salt. The magnesium salt may comprise MgX2, wherein X comprises at least one of Cl—, Br—, I—, TFSI—, FSI—, ClO4—, BF4—, PF6—, RSO3— (wherein R consists of at least one of an alkyl or aryl group), RCO2— (wherein R consists of at least one of an alkyl or aryl group), alkyl borides, alkyl borates, AlCl4—, AlXaRb— (wherein the sum of subscripts a and b is 4, X consists of a halide, and R consists of at least one of an alkyl or aryl group), carboranes, or hexamethyldisilazide.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: December 4, 2018
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Daniel A. Buttry, Tylan S. Watkins, Joseph Rheinhardt
  • Publication number: 20180233781
    Abstract: Ionic liquids suitable for use in magnesium batteries are disclosed. In an exemplary embodiment, a rechargeable magnesium battery comprises an anode electrode, a cathode electrode, and a chelating ionic liquid solution in contact therewith. The chelating ionic liquid may comprise at least one cation, at least one anion, and at least one soluble, magnesium salt. The magnesium salt may comprise MgX2, wherein X comprises at least one of Cl—, Br—, I—, TFSI—, FSI—, ClO4—, BF4—, PF6—, RSO3— (wherein R consists of at least one of an alkyl or aryl group), RCO2— (wherein R consists of at least one of an alkyl or aryl group), alkyl borides, alkyl borates, AlCl4—, AlXaRb— (wherein the sum of subscripts a and b is 4, X consists of a halide, and R consists of at least one of an alkyl or aryl group), carboranes, or hexamethyldisilazide.
    Type: Application
    Filed: April 2, 2018
    Publication date: August 16, 2018
    Inventors: Daniel A. Buttry, Tylan S. Watkins, Joseph Rheinhardt
  • Publication number: 20180080932
    Abstract: The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
    Type: Application
    Filed: November 30, 2017
    Publication date: March 22, 2018
    Applicant: Accelerate Diagnostics, Inc.
    Inventors: David A. Goldberg, David C. Howson, Steven W. Metzger, Daniel A. Buttry, Steven Scott Saavedra
  • Patent number: 9841422
    Abstract: The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: December 12, 2017
    Assignee: Accelerate Diagnostics, Inc.
    Inventors: David A. Goldberg, David C. Howson, Steven W. Metzger, Daniel A. Buttry, Steven Scott Saavedra
  • Patent number: 9657327
    Abstract: A method for the detection of microorganisms in a sample comprising contacting said sample with a biosensor concentration module, allowing microorganisms to grow for a first period of time and detecting growth of discrete microorganisms as an indication of the presence of said microorganisms.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 23, 2017
    Assignee: Accelerate Diagnostics, Inc.
    Inventors: Steven W. Metzger, David C. Howson, David A. Goldberg, Daniel A. Buttry
  • Patent number: 9056275
    Abstract: Carbon dioxide capture and release includes contacting a gas comprising carbon dioxide with a mixture comprising a precursor and a solvent and reducing the precursor to form a capture agent. The capture agent is reacted with the carbon dioxide to form a non-volatile species containing carbon dioxide. The non-volatile species is oxidized to regenerate the precursor and to release carbon dioxide. The mixture may be formed by combining the precursor and the solvent.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: June 16, 2015
    Assignee: ARIZONA BOARD OF REGENTS, A BODY CORPORATE OF THE STATE OF ARIZONA ACTING FOR AN ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventor: Daniel A. Buttry
  • Patent number: 8895197
    Abstract: The present application relates to an electrochemical metal-air cell in which a low temperature ionic liquid is used.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: November 25, 2014
    Assignee: Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Cody A. Friesen, Daniel A. Buttry
  • Patent number: 8895255
    Abstract: The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: November 25, 2014
    Assignee: Accelerate Diagnostics, Inc.
    Inventors: David A. Goldberg, David C. Howson, Steven W. Metzger, Daniel A. Buttry, Steven Scott Saavedra
  • Publication number: 20140323340
    Abstract: The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
    Type: Application
    Filed: July 11, 2014
    Publication date: October 30, 2014
    Inventors: David A. Goldberg, David C. Howson, Steven W. Metzger, Daniel A. Buttry, Steven Scott Saavedra
  • Publication number: 20140271434
    Abstract: Carbon dioxide capture and release includes contacting a gas comprising carbon dioxide with a mixture comprising a precursor and a solvent and reducing the precursor to form a capture agent. The capture agent is reacted with the carbon dioxide to form a non-volatile species containing carbon dioxide. The non-volatile species is oxidized to regenerate the precursor and to release carbon dioxide. The mixture may be formed by combining the precursor and the solvent.
    Type: Application
    Filed: August 17, 2012
    Publication date: September 18, 2014
    Inventor: Daniel A. Buttry
  • Patent number: 8460887
    Abstract: The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: June 11, 2013
    Assignee: Accelerate Diagnostics, Inc.
    Inventors: David A. Goldberg, David C. Howson, Steven W. Metzger, Daniel A. Buttry, Steven Scott Saavedra
  • Publication number: 20120077206
    Abstract: A method for the detection of microorganisms in a sample comprising contacting said sample with a biosensor concentration module, allowing microorganisms to grow for a first period of time and detecting growth of discrete microorganisms as an indication of the presence of said microorganisms.
    Type: Application
    Filed: December 5, 2011
    Publication date: March 29, 2012
    Applicant: Accelr8 Technology Corporation
    Inventors: Steven W. Metzger, David C. Howson, David A. Goldberg, Daniel A. Buttry
  • Patent number: 8071319
    Abstract: A method for the detection of microorganisms in a sample comprising contacting said sample with a biosensor concentration module, allowing microorganisms to grow for a first period of time and detecting growth of discrete microorganisms as an indication of the presence of said microorganisms.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: December 6, 2011
    Assignee: Accelr8 Technology Corporation
    Inventors: Steven W. Metzger, David C. Howson, David A. Goldberg, Daniel A. Buttry
  • Publication number: 20100136570
    Abstract: The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
    Type: Application
    Filed: February 8, 2010
    Publication date: June 3, 2010
    Inventors: David A. Goldberg, David C. Howson, Steven W. Metzger, Daniel A. Buttry, Steven Scott Saavedra
  • Patent number: 7687239
    Abstract: The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: March 30, 2010
    Assignee: Accelrs Technology Corporation
    Inventors: David A. Goldberg, David C. Howson, Steven W. Metzger, Daniel A. Buttry, Steven Scott Saavedra
  • Publication number: 20090272949
    Abstract: There is disclosed a method for producing metal oxide nanoparticles that are capped or otherwise encapsulated with conducting polymers. There is further disclosed a method for using metal oxide nanoparticles that are capped or encapsulated with conducting polymers in batteries and other energy storage devices. There is further disclosed a battery or other energy storage device having a cathode made from metal oxide nanoparticles capped or encapsulated with conducting particles. More particularly the battery is a secondary lithium battery.
    Type: Application
    Filed: March 20, 2009
    Publication date: November 5, 2009
    Inventor: Daniel A. Buttry