Patents by Inventor Daniel A. Hickman

Daniel A. Hickman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6909024
    Abstract: This invention is a process for producing vinyl chloride from an ethylene-containing feed, oxygen, and a chlorine source in the presence of a catalyst. The process permits direct production of vinyl chloride in a single reactor system, and further permits ethane to be used as the C2 hydrocarbon feed with recycle of ethylene from the product stream to constitute the ethylene specified for the feed. This invention in another aspect concerns also a composition of matter, and a method for making the composition, wherein the composition is useful as a catalyst for the vinyl chloride process. The composition comprises a rare earth-containing material, with the proviso that the catalyst prepared therefrom is substantially free of iron and copper and with the further proviso that when cerium is present the catalyst further comprises at least one more rare earth element other than cerium.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: June 21, 2005
    Assignee: The Dow Chemical Company
    Inventors: Mark E. Jones, Michael M. Olken, Daniel A. Hickman
  • Publication number: 20050027084
    Abstract: The preparation of vinyl halide monomer, and further to polyvinyl halide, starting from C1 compounds, involving conversion of methane or methanol to methyl halide; condensation of methyl halide to ethylene and co-product hydrogen halide; oxidative halogenation of ethylene to vinyl halide monomer; separation of vinyl halide monomer from any methyl halide present in the vinyl halide monomer stream; optional recycling of the methyl halide recovered to the condensation step; and recovery and optional recycling of the co-product hydrogen halide. Optionally, the vinyl halide monomer may be polymerized to polyvinyl halide to facilitate separation of the monomer from methyl halide. Methyl halide may be obtained via oxidative halogenation of methane in the presence of a rare earth halide or rare earth oxyhalide catalyst. Optionally, the methyl halide may be converted to methanol.
    Type: Application
    Filed: April 23, 2002
    Publication date: February 3, 2005
    Inventors: William Clarke, Terry Haymon, John Henley, Daniel Hickman, Mark Jones, Matt Miller, Thomas Morris, Daniel Reed, Lawrence Samson, Albert Schweizer, Steve Smith
  • Patent number: 6821924
    Abstract: An oxidative halogenation process involving contacting a hydrocarbon, for example, ethylene, or a halogenated hydrocarbon with a source of halogen, such as hydrogen chloride, and a source of oxygen in the presence of a catalyst so as to form a halocarbon, preferably a chlorocarbon, having a greater number of halogen substituents than the starting hydrocarbon or halogenated hydrocarbon, for example, 1,2-dichloroethane. The catalyst is a novel composition comprising copper dispersed on a porous rare earth halide support, preferably, a porous rare earth chloride support. A catalyst precursor composition comprising copper dispersed on a porous rare earth oxyhalide support is disclosed. Use of the porous rare earth halide and oxyhalide as support materials for catalytic components is disclosed.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: November 23, 2004
    Assignee: Dow Global Technologies Inc.
    Inventors: Robert J. Gulotty, Jr., Mark E. Jones, Daniel A. Hickman
  • Patent number: 6797845
    Abstract: A process for producing vinyl chloride monomer where significant quantities of both ethane and ethylene in input streams to the affiliated reactor where hydrogen chloride in the reactor effluent is essentially fully recovered from the reactor effluent in the first unit operation after the ethane/ethylene-to-vinyl reaction step or stage. Steps are presented of oxydehydro-chlorination catalytic reaction of ethane, ethylene, hydrogen chloride, oxygen, and chlorine; quenching the reactor effluent stream to provide a raw product stream having essentially no hydrogen chloride; and separation of the raw product stream into a vinyl chloride monomer product stream and into a lights stream; and recycling the lights steam to the reactor.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: September 28, 2004
    Assignee: Dow Global Technologies Inc.
    Inventors: Daniel A. Hickman, John P. Henley, Mark E. Jones, Kenric A. Marshall, Daniel J. Reed, William D. Clarke, Michael M. Olken, Lee E. Walko
  • Publication number: 20040156966
    Abstract: A method of making a loaf of crustless, sliced bread from a rectangular prismatic loaf of bread, the method comprising: decrusting the bread by moving the loaf of broad longitudinally past cutting blades to remove the crust from four sides of the loaf of bread; slicing the crustless bread by moving the loaf transversely past a plurality of blades to slice the loaf; and packaging the loaf by moving the loaf longitudinally to a packaging station.
    Type: Application
    Filed: February 11, 2003
    Publication date: August 12, 2004
    Inventors: Richard A. Berger, Clifton M. Buell, Kevin Ike Wilson, R. Daniel Hickman, Jose Maria Aguila Plassa, Javier Llavina Nadal, Barry Janeway
  • Publication number: 20040158110
    Abstract: An oxidative halogenation and optional dehydrogenation process involving contacting a reactant hydrocarbon having three or more carbon atoms, such as propane or propene, or a halogenated derivative thereof, with a source of halogen, and optionally, a source of oxygen in the presence of a rare earth halide or rare earth oxyhalide catalyst, so as to form a halogenated hydrocarbon product, such as allyl chloride, having three or more carbon atoms and having a greater number of halogen substituents as compared with the reactant hydrocarbon, and optionally, an olefinic co-product, such as propene. The less desired of the two products, that is, the halogenated hydrocarbon or the olefin as the case may be, can be recycled to the process to maximize the production of the desired product.
    Type: Application
    Filed: November 18, 2003
    Publication date: August 12, 2004
    Inventors: Albert E. Schweizer, Mark E. Jones, Daniel A. Hickman
  • Publication number: 20040152929
    Abstract: In one aspect, a process for producing vinyl chloride from ethane/ethylene involving: (a) combining ethane, ethylene, or mixtures thereof with an oxygen source and a chlorine source in a reactor containing a suitable catalyst under conditions sufficient to convert substantially all of the C2 hydrocarbon fed and to produce a product stream comprising vinyl chloride and hydrogen chloride; and (b) recycling unreacted hydrogen chloride back for use in Step (a). No C2 hydrocarbon recycle is required in this process. In another aspect, a process for producing vinyl chloride involving: (a) combining ethane, optionally ethylene, an oxygen source, and a chlorine source in a reactor containing a suitable catalyst under conditions sufficient to produce vinyl chloride and hydrogen chloride; (b) catalytically reacting said hydrogen chloride in a second reactor to provide a second reactor effluent essentially devoid of hydrogen chloride; and (c) recycling said second reactor effluent to step (a).
    Type: Application
    Filed: November 12, 2003
    Publication date: August 5, 2004
    Inventors: William D Clarke, Terry D Haymon, John P Henley, Daniel A Hickman, Mark E Jones, Matt C Miller, Thomas E Morris, Daniel J Reed, Lawrence J Samson, Steven A Smith
  • Publication number: 20040097767
    Abstract: An oxidative halogenation process involving contacting a hydrocarbon, for example, ethylene, or a halogenated hydrocarbon with a source of halogen, such as hydrogen chloride, and a source of oxygen in the presence of a catalyst so as to form a halocarbon, preferably a chlorocarbon, having a greater number of halogen substituents than the starting hydrocarbon or halogenated hydrocarbon, for example, 1,2-dichloroethane. The catalyst is a novel composition comprising copper dispersed on a porous rare earth halide support, preferably, a porous rare earth chloride support. A catalyst precursor composition comprising copper dispersed on a porous rare earth oxyhalide support is disclosed. Use of the porous rare earth halide and oxyhalide as support materials for catalytic components is disclosed.
    Type: Application
    Filed: November 12, 2003
    Publication date: May 20, 2004
    Inventors: Robert J. Gulotty, Mark E. Jones, Daniel A. Hickman
  • Patent number: 6680415
    Abstract: An oxidative halogenation process involving contacting a hydrocarbon, for example, ethylene, or a halogenated hydrocarbon with a source of halogen, such as hydrogen chloride, and a source of oxygen in the presence of a catalyst so as to form a halocarbon, preferably a chlorocarbon, having a greater number of halogen substituents than the starting hydrocarbon or halogenated hydrocarbon, for example, 1,2-dichloroethane. The catalyst is a novel composition comprising copper dispersed on a porous rare earth halide support, preferably, a porous rare earth chloride support. A catalyst precursor composition comprising copper dispersed on a porous rare earth oxyhalide support is disclosed. Use of the porous rare earth halide and oxyhalide as support materials for catalytic components is disclosed.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: January 20, 2004
    Assignee: Dow Global Technologies Inc.
    Inventors: Robert J. Gulotty, Jr., Mark E. Jones, Daniel A. Hickman
  • Publication number: 20030229245
    Abstract: In general the present invention relates to a continuous process for manufacturing (N-phosphonomethyl) glycine, glyphosate, by the catalyzed oxidation of N-phosphonomethyliminodiacetic acid. Glyphosate can be provided in high yield and in a cost efficient process by minimizing the competing side reactions and by-products. The process includes conducting the oxidation reaction and selecting an appropriate catalyst to maximize the rate of the oxidation of N-phosphonomethyliminodiacetic acid while at the same time minimizing the rate of oxidation of glyphosate in the same reaction.
    Type: Application
    Filed: November 21, 2002
    Publication date: December 11, 2003
    Inventors: Daniel A. Hickman, James W. Ringer
  • Publication number: 20030036619
    Abstract: The instant invention is a method for optimizing material transformation that includes the following six steps. The first step is to identify at least one physical variable that affects performance of a continuous unit operation for the material transformation. The second step is to select an initial set point of the at least one physical variable. The third step is to continuously perform the unit operation to produce a transformed material. The fourth step is to analyze the product to determine at least one component of interest of the transformed material. The fifth step is to select a subsequent set point of the at least one physical variable based on the analysis of the fourth step. The last step is to repeat steps three to five a sufficient number of times to optimize the unit operation.
    Type: Application
    Filed: July 26, 2002
    Publication date: February 20, 2003
    Inventors: Ray W. Chrisman, Larry D. Kershner, Daniel A. Hickman, Mark E. Jones, Duane R. Romer
  • Patent number: 6452058
    Abstract: An oxidative halogenation process involving contacting a reactant hydrocarbon selected from methane, a halogenated C1 hydrocarbon, or a mixture thereof with a source of halogen and, preferably, a source of oxygen in the presence of a rare earth halide or rare earth oxyhalide catalyst, so as to form a halogenated C1 hydrocarbon having a greater number of halogen substituents as compared with the reactant hydrocarbon. Preferably, the product is a monohalogenated methane, more preferably, methyl chloride. The oxidative halogenation process to form methyl halide can be integrated with downstream processes to produce valuable commodity chemicals, for example, methyl alcohol and/or dimethyl ether; light olefins, including ethylene, propylene, and butenes; higher hydrocarbons, including gasolines; vinyl halide monomer, and acetic acid. Hydrogen halide, which is a co-product of these downstream processes, can be recycled to the oxidative halogenation process.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: September 17, 2002
    Assignee: Dow Global Technologies Inc.
    Inventors: Albert E. Schweizer, Mark E. Jones, Daniel A. Hickman
  • Patent number: 5648582
    Abstract: A process for the catalytic partial oxidation of methane in gas phase at very short residence time (800,000 to 12,000,000 hr.sup.-1) by contacting a gas stream containing methane and oxygen with a metal supported catalyst, such as platinum deposited on a ceramic monolith.
    Type: Grant
    Filed: November 30, 1995
    Date of Patent: July 15, 1997
    Assignee: Regents of the University of Minnesota
    Inventors: Lanny D. Schmidt, Daniel A. Hickman