Patents by Inventor Daniel A. Niebauer

Daniel A. Niebauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110183139
    Abstract: This invention relates generally to organized assemblies of carbon and non-carbon compounds and methods of making such organized structures. In preferred embodiments, the organized structures of the instant invention take the form of nanorods or their aggregate forms. More preferably, a nanorod is made up of a carbon nanotube filled, coated, or both filled and coated by a non-carbon material. This invention is further drawn to the separation of single-wall carbon nanotubes. In particular, it relates to the separation of semiconducting single-wall carbon nanotubes from conducting (or metallic) single-wall carbon nanotubes. It also relates to the separation of single-wall carbon nanotubes according to their chirality and/or diameter.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 28, 2011
    Inventors: Leonid Grigorian, Steven G. Colbern, Alex E. Moser, Robert L. Gump, Daniel A. Niebauer, Sean Imtiaz Brahim
  • Patent number: 7938987
    Abstract: This invention relates generally to organized assemblies of carbon and non-carbon compounds and methods of making such organized structures. In preferred embodiments, the organized structures of the instant invention take the form of nanorods or their aggregate forms. More preferably, a nanorod is made up of a carbon nanotube filled, coated, or both filled and coated by a non-carbon material. This invention is further drawn to the separation of single-wall carbon nanotubes. In particular, it relates to the separation of semiconducting single-wall carbon nanotubes from conducting (or metallic) single-wall carbon nanotubes. It also relates to the separation of single-wall carbon nanotubes according to their chirality and/or diameter.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: May 10, 2011
    Assignee: Yazaki Corporation
    Inventors: Leonid Grigorian, Steven G. Colbern, Alex E. Moser, Robert L. Gump, Daniel A. Niebauer, Sean Imtiaz Brahim
  • Publication number: 20100117032
    Abstract: This invention relates generally to organized assemblies of carbon and non-carbon compounds and methods of making such organized structures. In preferred embodiments, the organized structures of the instant invention take the form of nanorods or their aggregate forms. More preferably, a nanorod is made up of a carbon nanotube filled, coated, or both filled and coated by a non-carbon material. This invention is further drawn to the separation of single-wall carbon nanotubes. In particular, it relates to the separation of semiconducting single-wall carbon nanotubes from conducting (or metallic) single-wall carbon nanotubes. It also relates to the separation of single-wall carbon nanotubes according to their chirality and/or diameter.
    Type: Application
    Filed: April 27, 2007
    Publication date: May 13, 2010
    Inventors: Leonid Grigorian, Steven G. Colbern, Alex E. Moser, Robert L. Gump, Daniel A. Niebauer, Sean Imtiaz Brahim
  • Patent number: 6923692
    Abstract: Electrical connectors incorporate a composite coating of molybdenum disulfide and a metal, preferably tin, for one or both of the contact surfaces of the electrical connector. The coating provides for a low coefficient of friction, low contact resistance, and good electrical conductivity, as well as good mechanical properties. The coating also reduces the insertion force of the electrical connectors, thereby increasing the number of possible terminal pairs and/or reducing terminal bending and breakage for a manually mated connector. The coating can be deposited on copper, tin-plated copper, tin alloy-plated copper or other metallic substrates, using any of several physical vapor deposition methods.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: August 2, 2005
    Assignee: Yazaki Corporation
    Inventor: Daniel A. Niebauer
  • Publication number: 20030219622
    Abstract: Electrical connectors incorporate a composite coating of molybdenum disulfide and a metal, preferably tin, for one or both of the contact surfaces of the electrical connector. The coating provides for a low coefficient of friction, low contact resistance, and good electrical conductivity, as well as good mechanical properties. The coating also reduces the insertion force of the electrical connectors, thereby increasing the number of possible terminal pairs and/or reducing terminal bending and breakage for a manually mated connector. The coating can be deposited on copper, tin-plated copper, tin alloy-plated copper or other metallic substrates, using any of several physical vapor deposition methods.
    Type: Application
    Filed: April 22, 2003
    Publication date: November 27, 2003
    Inventor: Daniel A. Niebauer
  • Patent number: 6231992
    Abstract: An improved partial reflector is disclosed in which the reflector is configured to provide selected levels of reflectance, transmittance and efficiency that are substantially uniform over the visible wavelength range of 400 to 700 nanometers. This result is achieved using a special three-layer coating that includes a metal layer sandwiched between two metal oxide dielectric layers having relatively high refractive indices >2.0. Advantageously, the three layers all incorporate the same metal, preferably niobium.
    Type: Grant
    Filed: September 4, 1998
    Date of Patent: May 15, 2001
    Assignee: Yazaki Corporation
    Inventors: Daniel A. Niebauer, Barry F. T. Bolker
  • Patent number: 5193136
    Abstract: Methods for making proton-exchanged, multi-function integrated optics chips, preferably chips based on the stable, rhombohedral lithium niobate structure, and having substantially diffused protons, while being substantially free of microcracking and of internal stresses that can result in microcracking, and yet having optimally high electro-optic coefficients, include the steps of: forming a multi-function integrated optics chip substrate from a substrate such as lithium niobate; affixing a removable mask or mask pattern to at least one surface of the chip to form one or more proton-exchanged patterns of desired size and shape at the surface of the chip; treating the masked chip with a proton-exchanging acid such as benzoic acid at a temperature and for a time sufficient to cause substantial proton exchange at and below the unmasked surface of the chip, but for a time insufficient to create any microcracking or internal stresses that lead to microcracking in the chip; removing the mask or mask pattern from th
    Type: Grant
    Filed: November 26, 1991
    Date of Patent: March 9, 1993
    Assignee: Litton Systems, Inc.
    Inventors: Chin L. Chang, Daniel A. Niebauer, Albert Choi