Patents by Inventor Daniel Adrian BYGRAVE

Daniel Adrian BYGRAVE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11629377
    Abstract: A series of hybridisations is performed for forming a target double-stranded nucleic acid from initial fragments, where each further hybridisation step hybridises the direct products of a pair of earlier hybridisation steps. For at least one further hybridisation step HF, both of the corresponding pair of earlier hybridisation steps HE comprise an error-detecting type of hybridisation step, which includes an error detecting operation to detect whether the hybridised fragments formed in the error-detecting type of hybridisation step HE comprise at least one erroneous hybridised fragment, and discarding at least part of the erroneous fragment to exclude it from a subsequent further hybridisation step. By detecting and removing erroneous fragments throughout a staged and controlled hybridisation process, erroneous fragments are prevented from diluting the pool of error-free fragments at each hybridisation step, to improve yield.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: April 18, 2023
    Assignee: EVONETIX LTD
    Inventors: Matthew James Hayes, Raquel Maria Sanches-Kuiper, Daniel Adrian Bygrave
  • Publication number: 20200248254
    Abstract: A series of hybridisations is performed for forming a target double-stranded nucleic acid from initial fragments, where each further hybridisation step hybridises the direct products of a pair of earlier hybridisation steps. For at least one further hybridisation step HF, both of the corresponding pair of earlier hybridisation steps HE comprise an error-detecting type of hybridisation step, which includes an error detecting operation to detect whether the hybridised fragments formed in the error-detecting type of hybridisation step HE comprise at least one erroneous hybridised fragment, and discarding at least part of the erroneous fragment to exclude it from a subsequent further hybridisation step. By detecting and removing erroneous fragments throughout a staged and controlled hybridisation process, erroneous fragments are prevented from diluting the pool of error-free fragments at each hybridisation step, to improve yield.
    Type: Application
    Filed: September 27, 2018
    Publication date: August 6, 2020
    Inventors: Matthew James HAYES, Raquel Maria SANCHES-KUIPER, Daniel Adrian BYGRAVE