Patents by Inventor Daniel Aloysius Nolan

Daniel Aloysius Nolan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220033311
    Abstract: A ceramic waveguide includes: a doped metal oxide ceramic core layer; and at least one cladding layer comprising the metal oxide surrounding the core layer, such that the core layer includes an erbium dopant and at least one rare earth metal dopant being: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, thulium, ytterbium, lutetium, scandium, or oxides thereof, or at least one non-rare earth metal dopant comprising zirconium or oxides thereof. Also included is a quantum memory including: at least one doped polycrystalline ceramic optical device with the ceramic waveguide and a method of fabricating the ceramic waveguide.
    Type: Application
    Filed: September 12, 2019
    Publication date: February 3, 2022
    Inventors: Bruce Gardiner Aitken, Sean Matthew Garner, Thomas Dale Ketcham, Daniel Aloysius Nolan, Jun Yang, Haitao Zhang
  • Publication number: 20220035096
    Abstract: A polarization controller comprising: (i) an optical fiber, and (ii) a carrier surrounding the optical fiber, the carrier comprising an off-center through hole with at least one collapsed region, such that the optical fiber is situated within the through hole and contacts the at least one collapsed region of the through hole, and the collapsed region exerts pressure on the optical fiber.
    Type: Application
    Filed: May 17, 2021
    Publication date: February 3, 2022
    Inventors: Rostislav Radiyevich Khrapko, William James Miller, Daniel Aloysius Nolan, Katerina Hristova Rousseva, Lucas Wayne Yeary
  • Publication number: 20220026749
    Abstract: A multi core optical fiber that includes a plurality of cores disposed in a cladding. The plurality of cores include a first core and a second core. The first core has a first propagation constant ?1, the second core has a second propagation constant ?2, the cladding has a cladding propagation constant ?0, and (I).
    Type: Application
    Filed: November 7, 2019
    Publication date: January 27, 2022
    Inventors: Rostislav Radiyevich Khrapko, Sukru Ekin Kocabas, Robert Adam Modavis, Daniel Aloysius Nolan, Jun Yang
  • Patent number: 11218226
    Abstract: A quantum communications system includes a quantum key generation system having a photonic quantum bit generator, a dispersion compensating optical fiber link, and a photon detector unit and a communications network having a signal generator, a signal channel, and a signal receiver. The dispersion compensating optical fiber link extends between and optically couples the photonic quantum bit generator and the photon detector unit. Further, the dispersion compensating optical fiber link is structurally configured to induce dispersion at an absolute dispersion rate of about 9 ps/(nm)km or less and induce attenuation at an attenuation rate of about 0.18 dB/Km or less such that the quantum key bit information of a plurality of photons output by the one or more photonic quantum bit generators is receivable at the photon detector unit at a bit rate of at least about 10 Gbit/sec.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: January 4, 2022
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Daniel Aloysius Nolan
  • Publication number: 20210399810
    Abstract: A quantum communications system includes a quantum key generation system having a photonic quantum bit generator, a low loss dispersion limiting fiber having a length L, for example greater than 200 km, and a photon detector unit and a communications network having a signal generator, a signal channel, and a signal receiver. The low loss dispersion limiting fiber extends between and optically couples the photonic quantum bit generator and the photon detector unit. Further, the low loss dispersion limiting fiber is structurally configured to limit dispersion at an absolute dispersion rate of about 9 ps/(nm)km or less, and preferably 0.5 ps/(nm)km or less, and induce attenuation at an attenuation rate of about 0.175 dB/km or less such that the quantum key bit information of a plurality of photons output by the one or more photonic quantum bit generators is receivable at the photon detector unit at a bit rate of at least 10 Gbit/sec.
    Type: Application
    Filed: November 12, 2019
    Publication date: December 23, 2021
    Inventors: Ming-Jun Li, Daniel Aloysius Nolan
  • Patent number: 11165508
    Abstract: A waveguide array that includes a plurality of waveguides disposed in a substrate. The plurality of waveguides include one or more first waveguides that have a first propagation constant and one or more second waveguides that have a second propagation constant, where the first propagation constant differs from the second propagation constant. The one or more first waveguides and the one or more second waveguides are disposed in the substrate in a linear distribution and at least a portion of the linear distribution is arranged based on a quasi-periodic sequence having a plurality of sequence segments. Each sequence segment is determined based on a quasi-periodic function, has an order, and corresponds to an arrangement segment of a first waveguide, a second waveguide, or combinations thereof. The linear distribution includes at least one arrangement segment corresponding with a third-order sequence segment or higher of the quasi-periodic sequence.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: November 2, 2021
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, Dan Trung Nguyen, Daniel Aloysius Nolan
  • Patent number: 11137539
    Abstract: A multicore optical fiber that includes a plurality of waveguiding cores disposed in a cladding. The plurality of waveguiding cores include one or more first waveguiding cores that have a first propagation constant and one or more second waveguiding cores that have a second propagation constant, where the first propagation constant differs from the second propagation constant. The one or more first waveguiding cores and the one or more second waveguiding cores are disposed in the cladding in a ring distribution and at least a portion of the ring distribution is arranged based on a quasi-periodic sequence having a plurality of sequence segments. Each sequence segment is determined based on a quasi-periodic function, has an order, and corresponds to an arrangement segment of a first waveguiding cores, a second waveguiding cores, or combinations thereof. The ring distribution includes at least one arrangement segment corresponding with a third-order sequence segment or higher of the quasi-periodic sequence.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: October 5, 2021
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, Rostislav Radiyevich Khrapko, Dan Trung Nguyen, Thien An Thi Nguyen, Daniel Aloysius Nolan
  • Patent number: 11137538
    Abstract: A multicore optical fiber that includes a plurality of waveguiding cores disposed in a cladding. The plurality of cores are situated adjacent to at least one other core with a core center to core center spacing being not larger than 10 times the radius of the average core, such that the greater than 10% of the light will couple from one core to the adjacent core over a propagating distance of 1 cm, along the fiber length so as to provide coupling between the adjacent cores and to enable quantum walk. The plurality waveguiding cores are disposed in the cladding in a ring distribution or at least a portion of the ring distribution.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: October 5, 2021
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, Rostislav Radiyevich Khrapko, Dan Trung Nguyen, Thien An Thi Nguyen, Daniel Aloysius Nolan
  • Publication number: 20210167866
    Abstract: A waveguide array that includes a plurality of waveguides disposed in a substrate. The plurality of waveguides include one or more first waveguides that have a first propagation constant and one or more second waveguides that have a second propagation constant, where the first propagation constant differs from the second propagation constant. The one or more first waveguides and the one or more second waveguides are disposed in the substrate in a linear distribution and at least a portion of the linear distribution is arranged based on a quasi-periodic sequence having a plurality of sequence segments. Each sequence segment is determined based on a quasi-periodic function, has an order, and corresponds to an arrangement segment of a first waveguide, a second waveguide, or combinations thereof. The linear distribution includes at least one arrangement segment corresponding with a third-order sequence segment or higher of the quasi-periodic sequence.
    Type: Application
    Filed: July 11, 2019
    Publication date: June 3, 2021
    Inventors: Nicholas Francis Borrelli, Dan Trung Nguyen, Daniel Aloysius Nolan
  • Patent number: 11005075
    Abstract: An apparatus for light diffraction and an organic light emitting diode (OLED) incorporating the light diffraction apparatus is disclosed. An apparatus for light diffraction may comprise an optional planarization layer, a transparent substrate, a waveguide layer. The planarization layer may have a refractive index of ns. The transparent substrate may have a refractive index of ng. The waveguide layer may have a refractive index nw distributed over of the transparent substrate. The waveguide layer may comprise a binding matrix, at least one nanoparticle. The waveguide layer may be interposed between the transparent substrate and the optional planarization layer.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: May 11, 2021
    Assignee: CORNING INCORPORATED
    Inventors: David Eugene Baker, Li Liu, Pamela Arlene Maurey, Robert Adam Modavis, Daniel Aloysius Nolan, Wageesha Senaratne
  • Publication number: 20210103089
    Abstract: A multicore optical fiber that includes a plurality of waveguiding cores disposed in a cladding. The plurality of cores are situated adjacent to at least one other core with a core center to core center spacing being not larger than 10 times the radius of the average core, such that the greater than 10% of the light will couple from one core to the adjacent core over a propagating distance of 1 cm, along the fiber length so as to provide coupling between the adjacent cores and to enable quantum walk. The plurality waveguiding cores are disposed in the cladding in a ring distribution or at least a portion of the ring distribution.
    Type: Application
    Filed: September 28, 2020
    Publication date: April 8, 2021
    Inventors: Nicholas Francis Borrelli, Rostislav Radiyevich Khrapko, Dan Trung Nguyen, Thien An Thi Nguyen, Daniel Aloysius Nolan
  • Publication number: 20210103090
    Abstract: A multicore optical fiber that includes a plurality of waveguiding cores disposed in a cladding. The plurality of waveguiding cores include one or more first waveguiding cores that have a first propagation constant and one or more second waveguiding cores that have a second propagation constant, where the first propagation constant differs from the second propagation constant. The one or more first waveguiding cores and the one or more second waveguiding cores are disposed in the cladding in a ring distribution and at least a portion of the ring distribution is arranged based on a quasi-periodic sequence having a plurality of sequence segments. Each sequence segment is determined based on a quasi-periodic function, has an order, and corresponds to an arrangement segment of a first waveguiding cores, a second waveguiding cores, or combinations thereof. The ring distribution includes at least one arrangement segment corresponding with a third-order sequence segment or higher of the quasi-periodic sequence.
    Type: Application
    Filed: September 28, 2020
    Publication date: April 8, 2021
    Inventors: Nicholas Francis Borrelli, Rostislav Radiyevich Khrapko, Dan Trung Nguyen, Thien An Thi Nguyen, Daniel Aloysius Nolan
  • Publication number: 20210028864
    Abstract: A quantum key generation system intended to mitigate the effect of the dead time of the photon detectors, the system including a photon generator, a photon pathway, a channel switch, and a photon detector unit. The photon pathway optically couples the photon generator and the channel switch. The channel switch is disposed between and optically coupled to the photon pathway and the photon detector unit. The photon detector unit includes a plurality of photon detectors and a plurality of detector unit sub-channels. Each detector unit sub-channel of the plurality of detector unit sub-channels optically couples the channel switch with an individual photon detector of the plurality of photon detectors. The channel switch is actuatable between a plurality of optical engagement positions. Further, each optical engagement position of the channel switch optically couples the photon pathway with a photon detector of the plurality of photon detectors.
    Type: Application
    Filed: February 8, 2019
    Publication date: January 28, 2021
    Inventors: Nikolay Alekseyevich Kaliteevskiy, Michal Mlejnek, Daniel Aloysius Nolan
  • Patent number: 10862678
    Abstract: A method of communicating information includes generating a photon pulse using an entangled photon generator. The photon pulse includes a photon pulse state and is temporally positioned within a photon pulse time slot. When the photon pulse is in a populated photon pulse state, it includes first and second entangled photons and the entangled photon generator outputs the first entangled photon into a first photon pathway optically coupled to an output end photon detector unit, and the second entangled photon into a second photon pathway, optically coupled to a receiving end photon detector unit. The method also includes determining the photon pulse state of the photon pulse using the output end photon detector unit, which outputs a signal regarding the photon pulse state of the photon pulse into a signal pathway to provide the receiving end photon detector unit with information regarding the photon pulse state of the photon pulse.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: December 8, 2020
    Assignee: Corning Incorporated
    Inventors: Nikolay A Kaliteevskiy, Michal Mlejnek, Daniel Aloysius Nolan
  • Publication number: 20200379171
    Abstract: A quantum communication system that includes a multiphoton entanglement generator, a plurality of photon detector units, and a plurality of optical fiber links. The plurality of photon detector units include a first photon detector unit and a second photon detector unit. The multiphoton entanglement generator is structurally configured to output more than two entangled photons. The plurality of optical fiber links comprise a first optical fiber link optically coupled to the multiphoton entanglement generator and disposed between the multiphoton entanglement generator and the first photon detector unit. The plurality of optical fiber links comprise a second optical fiber link optically coupled to the multiphoton entanglement generator and disposed between the multiphoton entanglement generator and the second photon detector unit. Further, at least one of the plurality of optical fiber links has a core, a cladding, and a scattering region having a plurality of scattering structures.
    Type: Application
    Filed: February 19, 2019
    Publication date: December 3, 2020
    Inventors: Ming-Jun Li, Daniel Aloysius Nolan
  • Patent number: 10663791
    Abstract: A material system for a surface display unit that includes a first side (i.e., a proximal side) that faces a viewer of the surface display unit and a second side (i.e., a distal side) facing away from the viewer. The material system provides at least three appearance states, including a generally opaque first appearance state when the surface display unit is “off” (i.e., not used to display images), a second appearance state in which the material system is illuminated from the first (i.e., proximal) side to display a first image (e.g., information and/or decoration) that is perceptible to the viewer, and a third appearance state in which the material system is illuminated from the second (i.e., distal) side to display a second image (e.g., information and/or decoration) that is perceptible to the viewer. Surface display units, systems, and methods comprising the material system are also disclosed.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: May 26, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Jacques Gollier, Dmitri Vladislavovich Kuksenkov, William James Miller, Daniel Aloysius Nolan, Charlene Marie Smith, James Andrew West
  • Publication number: 20200152268
    Abstract: A method of manufacturing a doped polycrystalline ceramic optical device includes mixing a plurality of transition metal complexes and a plurality of rare-earth metal complexes to form a metal salt solution, heating the metal salt solution to form a heated metal salt solution, mixing the heated metal salt solution and an organic precursor to induce a chemical reaction between the heated metal salt solution and the organic precursor to produce a plurality of rare-earth doped crystalline nanoparticles, and sintering the plurality of rare-earth doped nanoparticles to form a doped polycrystalline ceramic optical device having a rare-earth element dopant that is uniformly distributed within a crystal lattice of the doped polycrystalline ceramic optical device.
    Type: Application
    Filed: January 17, 2020
    Publication date: May 14, 2020
    Inventors: Jason Allen Brown, Stuart Gray, Thomas Dale Ketcham, Daniel Aloysius Nolan, Wageesha Senaratne, Jun Yang, Haitao Zhang
  • Patent number: 10572071
    Abstract: A touch system that employs interference effects is disclosed. The touch system includes first and second waveguides that have first and second optical paths that define an optical path difference. The first and second waveguides are configured so that a touch event deforms at least one of the waveguides in a manner that causes the optical path difference to change. The change in the optical path difference is detected by combining the light traveling in the two waveguides to form interfered light. The interfered light is processed to determine the occurrence of a touch event. The time-evolution of the deformation at the touch-event location can also be determined by measuring the interfered light over the duration of the touch event.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: February 25, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Ming-Jun Li, Daniel Aloysius Nolan, Wendell Porter Weeks
  • Patent number: 10553280
    Abstract: A method of manufacturing a doped polycrystalline ceramic optical device includes mixing a plurality of transition metal complexes and a plurality of rare-earth metal complexes to form a metal salt solution, heating the metal salt solution to form a heated metal salt solution, mixing the heated metal salt solution and an organic precursor to induce a chemical reaction between the heated metal salt solution and the organic precursor to produce a plurality of rare-earth doped crystalline nanoparticles, and sintering the plurality of rare-earth doped nanoparticles to form a doped polycrystalline ceramic optical device having a rare-earth element dopant that is uniformly distributed within a crystal lattice of the doped polycrystalline ceramic optical device.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: February 4, 2020
    Assignee: Corning Incorporated
    Inventors: Jason Allen Brown, Stuart Gray, Thomas Dale Ketcham, Daniel Aloysius Nolan, Wageesha Senaratne, Jun Yang, Haitao Zhang
  • Publication number: 20200007242
    Abstract: A quantum communications system includes a quantum key generation system having a photonic quantum bit generator, a dispersion compensating optical fiber link, and a photon detector unit and a communications network having a signal generator, a signal channel, and a signal receiver. The dispersion compensating optical fiber link extends between and optically couples the photonic quantum bit generator and the photon detector unit. Further, the dispersion compensating optical fiber link is structurally configured to induce dispersion at an absolute dispersion rate of about 9 ps/(nm)km or less and induce attenuation at an attenuation rate of about 0.18 dB/Km or less such that the quantum key bit information of a plurality of photons output by the one or more photonic quantum bit generators is receivable at the photon detector unit at a bit rate of at least about 10 Gbit/sec.
    Type: Application
    Filed: August 30, 2019
    Publication date: January 2, 2020
    Inventors: Ming-Jun Li, Daniel Aloysius Nolan