Patents by Inventor Daniel B. McKenna

Daniel B. McKenna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10124186
    Abstract: The Energy Field and Target Correlation System automatically correlates the characteristics of target particles and a living organism to compute the characteristics of an energy field that is applied to a living organism to activate the target particles which are bound to or consumed or taken up by invasive agents in the living organism to produce detectable effects which can be used to treat the invasive agents. The energy field must be crafted to properly control the response and localize the extent of the illumination. The System automatically selects a set of energy field characteristics, including: field type, frequency, field strength, duration, field modulation, repetition frequency, beam size, and focal point. The determined energy field characteristics then are used to activate field generators to generate the desired energy field.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: November 13, 2018
    Assignee: Endomagnetics Limited
    Inventors: Daniel B. McKenna, Karl M. Frantz
  • Patent number: 9687668
    Abstract: The Body Cavity Cancer Treatment System achieves extremely uniform temperatures inside the tissue of the body cavity thereby realizing optimal efficacy in enhancing operation of the chemotherapy agent while avoiding harm or pain to the patient. This is accomplished by the inclusion of “target particles”, such as nano-particles, into the body cavity along with the chemotherapy agent to enable the use of an externally generated energy field to cause heating of the chemotherapy agent and the surrounding tissue of the body cavity by the activation of the nano-particles. The proper selection of the applied energy field enables precise control of the heat generated by the movement of the nano-particles.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: June 27, 2017
    Assignee: ENDOMAGNETICS LIMITED
    Inventors: Daniel B. McKenna, Robert J. Tondu, Alireza Mashal, Karl M. Frantz, Martin A. Huisjen
  • Publication number: 20160151636
    Abstract: The Energy Field and Target Correlation System automatically correlates the characteristics of target particles and a living organism to compute the characteristics of an energy field that is applied to a living organism to activate the target particles which are bound to or consumed or taken up by invasive agents in the living organism to produce detectable effects which can be used to treat the invasive agents. The energy field must be crafted to properly control the response and localize the extent of the illumination. The System automatically selects a set of energy field characteristics, including: field type, frequency, field strength, duration, field modulation, repetition frequency, beam size, and focal point. The determined energy field characteristics then are used to activate field generators to generate the desired energy field.
    Type: Application
    Filed: December 23, 2015
    Publication date: June 2, 2016
    Inventors: Daniel B. McKenna, Karl M. Frantz
  • Patent number: 8968171
    Abstract: The Energy Field and Target Correlation System automatically correlates the characteristics of target particles and a living organism to compute the characteristics of an energy field that is applied to a living organism to activate the target particles which are bound to or consumed or taken up by invasive agents in the living organism to produce detectable effects which can be used to image and treat the invasive agents. The energy field must be crafted to properly control the response and localize the extent of the illumination. The System automatically selects a set of energy field characteristics, including: field type, frequency, field strength, duration, field modulation, repetition frequency, beam size, and focal point. The determined energy field characteristics then are used to activate field generators to generate the desired energy field.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: March 3, 2015
    Assignee: Endomagnetics Limited
    Inventors: Daniel B. McKenna, Karl M. Frantz, Marvin A. Ross, Andrew C. Updegrave, Michael E. Susedik
  • Publication number: 20140303701
    Abstract: The Low Temperature Hyperthermia System illuminates nano-particles, which are implanted in a living organism at the locus of the cancer or into the cancer cells, with a precisely determined energy field. This energy field ensures that the optimal cancer cell and cancer stem cell destruction temperature of 42° C. is not exceeded in the tissue, which minimizes the release of Heat Shock Proteins and cancer stem cells. The Low Temperature Hyperthermia System uses specially designed nano-particles that exhibit a specific temperature rise in a given illumination energy field and then have no further temperature rise even if the applied illumination energy field increases beyond the optimal level. Alternatively, the nano-particles exhibit a tightly controlled temperature rise based on a pre-determined illumination energy field strength. This innovative approach can also use radiation and/or chemotherapy in conjunction with the nano-particle illumination to kill the majority of the cancer cells.
    Type: Application
    Filed: June 19, 2014
    Publication date: October 9, 2014
    Inventors: Daniel B. McKenna, Robert J. Tondu
  • Publication number: 20140243733
    Abstract: The Invasive Agent Treatment System incorporates the pairing of energy fields with nano-particles to cause a thermal effect in the nano-particles, which thermal effect is transmitted into the biological cells of the invasive agent. The energy fields are derived from at least one or a combination of the following: an electric field, a magnetic field, an electromagnetic field (EM), an acoustic field, and an optical field. The Invasive Agent Treatment System provides the necessary coordination among the characteristics of the nano-particles, concentration of nano-particles, duration of treatment, and applied fields to enable the generation of precisely crafted fields and their application in a mode and manner to be effective with a high degree of accuracy.
    Type: Application
    Filed: May 6, 2014
    Publication date: August 28, 2014
    Applicant: Actium BioSystems, LLC
    Inventors: Daniel B. McKenna, Karl M. Frantz, Andrew C. Updegrave, Martin A. Huisjen
  • Patent number: 8258743
    Abstract: The E-Grid Sub-Network Load Manager operates to regulate the demands presented by the vehicles to the associated Sub-Network thereby to spread the load presented to the service disconnect over time to enable the controllable charging of a large number of vehicles. The load management can be implemented by a number of methodologies, including: queuing requests and serving each request in sequence until satisfaction; queuing requests and cycling through the requests, partially serving each request, then proceeding to the next until the cyclic partial charging service has satisfied all requests; ordering requests pursuant to a percentage of recharge required measurement; ordering requests on an estimated connection time metric; ordering requests on a predetermined level of service basis; and the like. It is evident that a number of these methods can be concurrently employed thereby to serve all of the vehicles in the most efficient manner that can be determined.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: September 4, 2012
    Assignee: Lava Four, LLC
    Inventors: Richard M. Tyler, Daniel B. McKenna, James M. Graziano
  • Publication number: 20120190912
    Abstract: The Energy Field and Target Correlation System automatically correlates the characteristics of target particles and a living organism to compute the characteristics of an energy field that is applied to a living organism to activate the target particles which are bound to or consumed or taken up by invasive agents in the living organism to produce detectable effects which can be used to image and treat the invasive agents. The energy field must be crafted to properly control the response and localize the extent of the illumination. The System automatically selects a set of energy field characteristics, including: field type, frequency, field strength, duration, field modulation, repetition frequency, beam size, and focal point. The determined energy field characteristics then are used to activate field generators to generate the desired energy field.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 26, 2012
    Applicant: Actium BioSystems, LLC
    Inventors: Daniel B. McKenna, Karl M. Frantz, Marvin A. Ross, Andrew C. Updegrave, Michael E. Susedik
  • Publication number: 20120191148
    Abstract: The Energy Field and Target Correlation System automatically correlates the characteristics of target particles and a living organism to compute the characteristics of an energy field that is applied to a living organism to activate the target particles which are bound to or consumed by invasive agents in the living organism to produce detectable effects which can be used to treat the invasive agents. The energy field must be crafted to properly control the response and localize the extent of the illumination. The System automatically selects a set of energy field characteristics, including: field type, frequency, field strength, duration, field modulation, repetition frequency, beam size, and focal point. The determined energy field characteristics then are used to activate field generators to generate the desired energy field.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 26, 2012
    Applicant: Actium BioSystems, LLC
    Inventors: Daniel B. McKenna, Karl M. Frantz, Marvin A. Ross, Andrew C. Updegrave, Michael E. Susedik
  • Publication number: 20120190910
    Abstract: The Invasive Agent Treatment System incorporates the pairing of energy fields with nano-particles to cause a thermal effect in the nano-particles, which thermal effect is transmitted into the biological cells of the invasive agent. The energy fields are derived from at least one or a combination of the following: an electric field, a magnetic field, an electromagnetic field (EM), an acoustic field, and an optical field. The Invasive Agent Treatment System provides the necessary coordination among the characteristics of the nano-particles, concentration of nano-particles, duration of treatment, and applied fields to enable the generation of precisely crafted fields and their application in a mode and manner to be effective with a high degree of accuracy.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 26, 2012
    Applicant: Actium BioSystems, LLC
    Inventors: Daniel B. McKenna, Karl M. Frantz, Andrew C. Updegrave, Martin A. Huisjen
  • Publication number: 20120190911
    Abstract: The Low Temperature Hyperthermia System illuminates nano-particles, which are implanted in a living organism at the locus of the cancer or into the cancer cells, with a precisely determined energy field. This energy field ensures that the optimal cancer cell and cancer stem cell destruction temperature of 42° C. is not exceeded in the tissue, which minimizes the release of Heat Shock Proteins and cancer stem cells. The Low Temperature Hyperthermia System uses specially designed nano-particles that exhibit a specific temperature rise in a given illumination energy field and then have no further temperature rise even if the applied illumination energy field increases beyond the optimal level. Alternatively, the nano-particles exhibit a tightly controlled temperature rise based on a pre-determined illumination energy field strength. This innovative approach can also use radiation and/or chemotherapy in conjunction with the nano-particle illumination to kill the majority of the cancer cells.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 26, 2012
    Applicant: Actium BioSystems, LLC
    Inventors: Daniel B. McKenna, Robert J. Tondu
  • Publication number: 20120190978
    Abstract: The Energy Field and Target Correlation System automatically correlates the characteristics of target particles and a living organism to compute the characteristics of an energy field that is applied to a living organism to activate the target particles which are bound to or consumed or taken up by invasive agents in the living organism to produce detectable effects which can be used to diagnose the presence and locus of the invasive agents. The energy field must be crafted to properly control the response and localize the extent of the illumination. The System automatically selects a set of energy field characteristics, including: field type, frequency, field strength, duration, field modulation, repetition frequency, beam size, and focal point. The determined energy field characteristics then are used to activate field generators to generate the desired energy field. A multi-dimensional image is produced identifying the spatial extent of the invasive agent.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 26, 2012
    Applicant: Actium BioSystems, LLC
    Inventors: Daniel B. McKenna, Karl M. Frantz
  • Publication number: 20120190979
    Abstract: The Energy Field and Target Correlation System automatically correlates the characteristics of target particles and a living organism to compute the characteristics of an energy field that is applied to a living organism to activate the target particles which are bound to or consumed or taken up by invasive agents in the living organism to produce detectable effects which can be used to treat the invasive agents. The energy field must be crafted to properly control the response and localize the extent of the illumination. The System automatically selects a set of energy field characteristics, including: field type, frequency, field strength, duration, field modulation, repetition frequency, beam size, and focal point. The determined energy field characteristics then are used to activate field generators to generate the desired energy field.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 26, 2012
    Applicant: Actium BioSystems, LLC
    Inventors: Daniel B. McKenna, Karl M. Frantz
  • Patent number: 8198859
    Abstract: The E-Grid Sub-Network Load Manager operates to regulate the demands presented by vehicles to the associated Sub-Network thereby to spread the load presented to the service disconnect over time to enable controllable charging of a large number of vehicles. Load management can be implemented by a number of methodologies, including: queuing requests and serving each request in sequence until satisfaction; queuing requests and cycling through the requests, partially serving each one, then proceeding to the next until the cyclic partial charging service has satisfied all of the requests; ordering requests pursuant to a percentage of recharge required measurement; ordering requests on an estimated connection time metric; ordering requests on a predetermined level of service basis; and the like. It is evident that a number of these methods can be concurrently employed thereby to serve all of the vehicles in the most efficient manner that can be determined.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: June 12, 2012
    Assignee: Lava Four, LLC
    Inventors: Richard M. Tyler, Daniel B. McKenna, James M. Graziano
  • Patent number: 8143842
    Abstract: The E-Grid Sub-Network Load Manager operates to regulate the demands presented by the vehicles to the associated Sub-Network thereby to spread the load presented to the service disconnect over time to enable the controllable charging of a large number of vehicles. The load management can be implemented by a number of methodologies, including: queuing requests and serving each request in sequence until satisfaction; queuing requests and cycling through them, partially serving each request, then proceeding to the next until the cyclic partial charging service has satisfied all requests; ordering requests pursuant to a percentage of recharge required measurement; ordering requests on an estimated connection time metric; ordering requests on a predetermined level of service basis; and the like. It is evident that a number of these methods can be concurrently employed thereby to serve all of the vehicles in the most efficient manner that can be determined.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: March 27, 2012
    Assignee: Lava Four, LLC
    Inventors: Richard M. Tyler, Daniel B. McKenna, James M. Graziano
  • Publication number: 20100254297
    Abstract: The reverse path transaction management system enables the subscriber to receive a multicast on their wireless subscriber device via the forward path of a multicast channel or via a unidirectional broadcast channel concurrently with a plurality of other subscribers on the same multicast channel or broadcast channel. The subscribers can simultaneously initiate a transaction to purchase goods and/or services via the reverse path associated with the shared multicast channel or via a separate cellular communication connection associated with the broadcast channel. Typically, goods and/or services are offered to the subscriber as part of the multicast extant on the shared forward channel.
    Type: Application
    Filed: June 17, 2010
    Publication date: October 7, 2010
    Applicant: Lava Two, LLC
    Inventors: Daniel B. McKenna, James M. Graziano
  • Publication number: 20100145885
    Abstract: The System For On-Board Metering Of Recharging Power Consumption In Vehicles Equipped With Electrically Powered Propulsion Systems uses a unique identification of the associated Self-Identifying Outlet and the power consumption as metered on the Self-Reporting Vehicle to enable the Self-Reporting Vehicle to report the Self-Reporting Vehicle's power consumption to the utility company to enable the utility company to bill the vehicle owner and credit the account of the Self-Identifying Outlet for the power consumed by the recharging of the vehicular battery banks.
    Type: Application
    Filed: December 5, 2008
    Publication date: June 10, 2010
    Applicant: Lava Four, LLC
    Inventors: James M. Graziano, George Kauss, Daniel B. McKenna, Richard M. Tyler
  • Publication number: 20100145837
    Abstract: The Network for Authentication, Authorization, And Accounting Of Recharging Processes For Vehicles Equipped With Electrically Powered Propulsion Systems uses a unique identification of the associated Self-Identifying Outlet and the power consumption as metered on the Self-Reporting Vehicle to enable the Self-Reporting Vehicle to report the Self-Reporting Vehicle's power consumption to the utility company to enable the utility company to bill the vehicle owner and credit the account of the Self-Identifying Outlet for the power consumed by the recharging of the vehicular battery banks.
    Type: Application
    Filed: December 5, 2008
    Publication date: June 10, 2010
    Applicant: Lava Four, LLC
    Inventors: James M. Graziano, George Kauss, Daniel B. McKenna, Richard M. Tyler
  • Publication number: 20100145535
    Abstract: The E-Grid Sub-Network Load Manager operates to regulate the demands presented by vehicles to the associated Sub-Network thereby to spread the load presented to the service disconnect over time to enable controllable charging of a large number of vehicles. Load management can be implemented by a number of methodologies, including: queuing requests and serving each request in sequence until satisfaction; queuing requests and cycling through the requests, partially serving each one, then proceeding to the next until the cyclic partial charging service has satisfied all of the requests; ordering requests pursuant to a percentage of recharge required measurement; ordering requests on an estimated connection time metric; ordering requests on a predetermined level of service basis; and the like. It is evident that a number of these methods can be concurrently employed thereby to serve all of the vehicles in the most efficient manner that can be determined.
    Type: Application
    Filed: May 6, 2009
    Publication date: June 10, 2010
    Inventors: Richard M. Tyler, Daniel B. McKenna, James M. Graziano
  • Publication number: 20100141205
    Abstract: The E-Grid Sub-Network Load Manager operates to regulate the demands presented by the vehicles to the associated Sub-Network thereby to spread the load presented to the service disconnect over time to enable the controllable charging of a large number of vehicles. The load management can be implemented by a number of methodologies, including: queuing requests and serving each request in sequence until satisfaction; queuing requests and cycling through them, partially serving each request, then proceeding to the next until the cyclic partial charging service has satisfied all requests; ordering requests pursuant to a percentage of recharge required measurement; ordering requests on an estimated connection time metric; ordering requests on a predetermined level of service basis; and the like. It is evident that a number of these methods can be concurrently employed thereby to serve all of the vehicles in the most efficient manner that can be determined.
    Type: Application
    Filed: May 6, 2009
    Publication date: June 10, 2010
    Inventors: Richard M. Tyler, Daniel B. McKenna, James M. Graziano