Patents by Inventor Daniel B. Miracle

Daniel B. Miracle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120180913
    Abstract: A method for refining the microstructure of titanium alloys in a single thermomechanical processing step, wherein the titanium alloy comprises boron. In some embodiments, the method comprises the steps of first adding boron to the titanium alloy then subjecting the boron-containing titanium alloy to a thermomechanical processing step. Also provided is a method for achieving superplasticity in titanium alloys comprising the steps of selecting a boron-containing titanium alloy, determining the temperature and strain rate necessary to achieve beta superplasticity, and applying sufficient temperature and strain rate to the boron-containing titanium alloy to deform the alloy to the desired shape. Also provided methods of forming titanium alloy parts and the parts prepared by these methods.
    Type: Application
    Filed: January 6, 2012
    Publication date: July 19, 2012
    Inventors: Daniel B. Miracle, Seshacharyulu Tamirisakandala, Radhakrishna B. Bhat, Jaimie S. Tiley
  • Patent number: 8128764
    Abstract: A method for refining the microstructure of titanium alloys in a single thermomechanical processing step, wherein the titanium alloy comprises boron. In some embodiments, the method comprises the steps of first adding boron to the titanium alloy then subjecting the boron-containing titanium alloy to a thermomechanical processing step. Also provided is a method for achieving superplasticity in titanium alloys comprising the steps of selecting a boron-containing titanium alloy, determining the temperature and strain rate necessary to achieve beta superplasticity, and applying sufficient temperature and strain rate to the boron-containing titanium alloy to deform the alloy to the desired shape. Also provided methods of forming titanium alloy parts and the parts prepared by these methods.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: March 6, 2012
    Inventors: Daniel B. Miracle, Seshacharyulu Tamirisakandala, Radhakrishna B. Bhat, Jaimie S Tiley
  • Publication number: 20110146853
    Abstract: A method for refining the microstructure of titanium alloys in a single thermomechanical processing step, wherein the titanium alloy comprises boron. In some embodiments, the method comprises the steps of first adding boron to the titanium alloy then subjecting the boron-containing titanium alloy to a thermomechanical processing step. Also provided is a method for achieving superplasticity in titanium alloys comprising the steps of selecting a boron-containing titanium alloy, determining the temperature and strain rate necessary to achieve beta superplasticity, and applying sufficient temperature and strain rate to the boron-containing titanium alloy to deform the alloy to the desired shape. Also provided methods of forming titanium alloy parts and the parts prepared by these methods.
    Type: Application
    Filed: December 13, 2004
    Publication date: June 23, 2011
    Applicant: OHIO UNIVERSITY
    Inventors: Daniel B. Miracle, Seshacharyulu Tamirisakandala, Radhakrishna B. Bhat, Jaimie S. Tiley
  • Patent number: 7879286
    Abstract: A method of producing a high strength, high stiffness and high ductility titanium alloy, comprising combining the titanium alloy with boron so that the boron concentration in the boron-modified titanium alloy does not exceed the eutectic limit. The carbon concentration of the boron-modified titanium alloy is maintained below a predetermined limit to avoid embrittlement. The boron-modified alloy is heated to a temperature above the beta transus temperature to eliminate any supersaturated excess boron. The boron-modified titanium alloy is deformed at a speed slow enough to prevent microstructural damage and reduced ductility.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: February 1, 2011
    Inventors: Daniel B. Miracle, Seshacharyulu Tamirisakandala, Radhakrishna B. Bhat, Dale J. McEldowney, Jerry L. Fields, William M. Hanusiak, Rob L. Grabow, C. Fred Yolton, Eric S. Bono
  • Patent number: 7364692
    Abstract: Metal-matrix composites with combinations of physical and mechanical properties desirable for specific applications can be obtained by varying and controlling selected parameters in the material formation processes, particularly by increasing the microstructural homogeneity of the composite, while maintaining a constant mixture ratio or volume fraction. In one embodiment of the invention, a CuSiC composite having increased thermal conductivity is obtained by closely controlling the size of the SiC particles. In another embodiment of the invention, AlSiC composites which exhibit increased ultimate tensile and yield strengths are made by closely controlling the size of SiC and Al particles.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: April 29, 2008
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Jonathan E. Spowart, Benji Maruyama, Daniel B. Miracle
  • Publication number: 20070286761
    Abstract: A method of producing a high strength, high stiffness and high ductility titanium alloy, comprising combining the titanium alloy with boron so that the boron concentration in the boron-modified titanium alloy does not exceed the eutectic limit. The carbon concentration of the boron-modified titanium alloy is maintained below a predetermined limit to avoid embrittlement. The boron-modified alloy is heated to a temperature above the beta transus temperature to eliminate any supersaturated excess boron. The boron-modified titanium alloy is deformed at a speed slow enough to prevent microstructural damage and reduced ductility.
    Type: Application
    Filed: June 7, 2006
    Publication date: December 13, 2007
    Inventors: Daniel B. Miracle, Seshacharyulu Tamirisakandala, Radhakrishna B. Bhat, Dale J. McEldowney, Jerry L. Fields, William M. Hanusiak, Rob L. Grabow, C. Fred Yolton, Eric S. Bono
  • Patent number: 7060139
    Abstract: The present invention provides a high strength aluminum alloy composition and applications of the high strength aluminum alloy composition. The alloy composition exhibits high tensile strength at ambient temperatures and cryogenic temperatures. The alloy composition can exhibit high tensile strength while maintaining a high elongation in ambient temperatures and cryogenic temperatures.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: June 13, 2006
    Assignee: UES, Inc.
    Inventors: Oleg N. Senkov, Svetlana V. Senkova, Madan G. Mendiratta, Daniel B. Miracle, Yuly V. Milman, Dina V. Lotsko, Alexandr I. Sirko
  • Patent number: 7048815
    Abstract: The present invention provides a method of making a high strength aluminum alloy composition. The alloy composition exhibits high tensile strength at ambient temperatures and cryogenic temperatures. The alloy composition can exhibit high tensile strength while maintaining a high elongation in ambient temperatures and cryogenic temperatures.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: May 23, 2006
    Assignee: UES, Inc.
    Inventors: Oleg N. Senkov, Svetlana V. Senkova, Madan G. Mendiratta, Daniel B. Miracle
  • Patent number: 6972109
    Abstract: Metal-matrix composites with combinations of physical and mechanical properties desirable for specific applications can be obtained by varying and controlling selected parameters in the material formation processes, particularly by increasing the microstructural homogeneity of the composite, while maintaining a constant mixture ratio or volume fraction. In one embodiment of the invention, a CuSiC composite having increased thermal conductivity is obtained by closely controlling the size of the SiC particles. In another embodiment of the invention, AlSiC composites which exhibit increased ultimate tensile and yield strengths are made by closely controlling the size of SiC and Al particles.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: December 6, 2005
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Jonathan E. Spowart, Benji Maruyama, Daniel B. Miracle
  • Patent number: 6869566
    Abstract: The method of the present invention incorporates an amorphous metal powder coated with a ductile crystalline metal or alloy. The coated powder is consolidated to form a dense compact of isolated or continuous amorphous metal particles within a continuous ductile metal network. This provides a material in bulk product form exhibiting improved fracture properties including ductility and fracture toughness.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: March 22, 2005
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Kevin L. Kendig, Jonathan E. Spowart, Daniel B. Miracle
  • Publication number: 20040089382
    Abstract: The present invention provides a method of making a high strength aluminum alloy composition. The alloy composition exhibits high tensile strength at ambient temperatures and cryogenic temperatures. The alloy composition can exhibit high tensile strength while maintaining a high elongation in ambient temperatures and cryogenic temperatures.
    Type: Application
    Filed: November 8, 2002
    Publication date: May 13, 2004
    Inventors: Oleg N. Senkov, Svetlana V. Senkova, Madan G. Mendiratta, Daniel B. Miracle
  • Publication number: 20040089378
    Abstract: The present invention provides a high strength aluminum alloy composition and applications of the high strength aluminum alloy composition. The alloy composition exhibits high tensile strength at ambient temperatures and cryogenic temperatures. The alloy composition can exhibit high tensile strength while maintaining a high elongation in temperatures and cryogenic temperatures.
    Type: Application
    Filed: November 8, 2002
    Publication date: May 13, 2004
    Inventors: Oleg N. Senkov, Svetlana V. Senkova, Madan G. Mendiratta, Daniel B. Miracle, Yuly V. Milman, Dina V. Lotsko, Alexandr I. Sirko
  • Patent number: 6623566
    Abstract: A method for selecting alloying elements for complex, multi-component amorphous metal alloys is provided in which the solvent element is the largest atom with a concentration of 40-80 at %, the second most concentrated element has a radius of 65-83 % the radius of the solvent atom and a concentration of 10-40 at % in the alloy, with other elements selected at lower concentrations. For ternary alloys specified by this invention, the third element must have an atomic radius within 70-92 % of the solvent atom radius. In the preferred embodiment, alloys with four or more elements are specified, where the third elements must have an atomic radius within 70-80 %, the fourth element must have an atomic radius within 80-92 % of the solvent atom radius, and all other solute elements must have atomic radii within 70-92 % of the solvent atom radius.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: September 23, 2003
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Oleg N. Senkov, Daniel B. Miracle