Patents by Inventor Daniel Beckel

Daniel Beckel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220355430
    Abstract: A suction-extraction adapter for a drilling tool has a housing and a tool connection unit. The housing has a suction-extraction device interface for the detachable connection of a suction-extraction device to the suction-extraction adapter. The tool connection unit enables the axial fixing of the suction-extraction adapter on the drilling tool. The housing also has a locking mechanism. The tool connection unit is configured to be locked on the housing of the suction-extraction adapter via the locking mechanism.
    Type: Application
    Filed: May 3, 2022
    Publication date: November 10, 2022
    Inventors: Daniel Eckel, Daniel Beckel, Edit Okenwa, Rainer Widmann, Stefan Sonntag, Tamara Gaschler, Andreas Schurig, Ioan Ionescu, Alexander Volz
  • Patent number: 9677149
    Abstract: A method for post-weld heat treatment of a without a filler material welded high strength component made of a gamma prime (??) strengthened superalloy can include providing the welded component, heating the welded component by applying a rapid heating-up rate in the range of 20° C./min to 40° C./min during the entire temperature range from room temperature (RT) up to a temperature T1 of at least 1000° C., holding the welded component at T1 and then heating the component by applying a slow heating-up rate of about 5° C./min to a final temperature Tf, then holding the welded component at Tf for a time tf sufficient for at least partially dissolving the gamma prime phase in a weld of the welded component and also in a base material surrounding the weld, and cooling the component with a cooling rate that is greater than or equal to about 20° C./min.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: June 13, 2017
    Assignee: ANSALDO ENERGIA IP UK LIMITED
    Inventors: Thomas Etter, Daniel Beckel, Thomas Opderbecke, Guenter Ambrosy
  • Publication number: 20150041434
    Abstract: The invention relates to a method for separating a metal part from a ceramic part, which are joined at a connecting face within a modular hybrid component, especially of a gas turbine. The method includes said component being subjected to a reducing atmosphere in a gaseous process at elevated temperatures to dissolve the connection between said metal part and said ceramic part, especially by dissolving the ceramic part itself.
    Type: Application
    Filed: September 24, 2014
    Publication date: February 12, 2015
    Inventors: Daniel BECKEL, Alexander Stankowski, Sophie Betty Claire Duval
  • Publication number: 20150028021
    Abstract: The invention relates to a method for processing a modular hybrid component having a first part made of a first material and a second part made of a second material, which is different from the first material with regard to its electromagnetic and/or thermal properties. The method including exposing the modular hybrid component to an alternating electromagnetic field, whereby both parts are heated up differently, and that a brazing or soldering joint or field sensitive mineral cement between the first part and the second part is affected by the heating action.
    Type: Application
    Filed: September 25, 2014
    Publication date: January 29, 2015
    Inventors: Daniel BECKEL, Alexander Stankowski, Sophie Betty Claire Duval
  • Publication number: 20140366995
    Abstract: The invention relates to a method of post-weld heat treatment of a without a filler material electron beam or laser welded high strength component made of a gamma prime (??) strengthened superalloy based on Ni or Co or Fe or combinations thereof. The method consists of the following steps a) providing the welded component, then b) heating the welded component by applying a rapid heating-up rate in the range of about 20 to 40° C./min during the entire temperature range from RT up to a temperature T1 of at least 1000° C., then c) holding the welded component at T1 and then heating the component by applying a slow heating-up rate of about 5° C./min to a final temperature Tf, then d) holding the welded component at Tf for a time tf, wherein isothermal dwell time tf is sufficient for at least partially dissolving the gamma prime phase in the weld and also in the base material surrounding the weld; then e) cooling the component with a cooling rate of about 20° C.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 18, 2014
    Inventors: Thomas Etter, Daniel Beckel, Thomas Opderbecke, Guenter Ambrosy
  • Patent number: 8881965
    Abstract: In a Ni-based, Co-based, or Ni—Co-based braze alloy (1) for high-temperature brazing of components (7) of modular structure and for repairing damaged components (7) which are formed of single crystal or directionally solidified superalloys using said braze alloy (1), the braze alloy has a first metallic powder component (2) having particle sizes in the nanometer range and a second metallic powder component (3) having particle sizes in the micrometer range. The surface of the particles of the second powder component (3) is thinly coated with particles of the first powder component (2). The braze alloy (1) additionally includes grain boundary stabilizing elements as alloying elements. In addition, melting point depressants can be present in the braze alloy (1) in a commercially common quantity or with a considerably increased proportion. Both the melting temperature of the braze alloy (1) and the probability of recrystallization are advantageously reduced.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: November 11, 2014
    Assignee: Alstom Technology Ltd.
    Inventors: Alexander Stankowski, Daniel Beckel
  • Publication number: 20130020377
    Abstract: In a Ni-based, Co-based, or Ni—Co-based braze alloy (1) for high-temperature brazing of components (7) of modular structure and for repairing damaged components (7) which are formed of single crystal or directionally solidified superalloys using said braze alloy (1), the braze alloy has a first metallic powder component (2) having particle sizes in the nanometer range and a second metallic powder component (3) having particle sizes in the micrometer range. The surface of the particles of the second powder component (3) is thinly coated with particles of the first powder component (2). The braze alloy (1) additionally includes grain boundary stabilizing elements as alloying elements. In addition, melting point depressants can be present in the braze alloy (1) in a commercially common quantity or with a considerably increased proportion. Both the melting temperature of the braze alloy (1) and the probability of recrystallization are advantageously reduced.
    Type: Application
    Filed: September 14, 2011
    Publication date: January 24, 2013
    Inventors: Alexander Stankowski, Daniel Beckel
  • Publication number: 20120251777
    Abstract: A component for use in an engine in which the component is subjected to at least one of a high temperature, a corrosive atmosphere, an oxidizing atmosphere, a high mechanical load, a cyclic thermal load and transient conditions such that the component is prone to crack formation and propagation. At least one base material includes a self healing system in a form of an added active phase, the self healing system including at least one of a melting point depressant and a substance having a softening or a melting point below or within a range of an operating temperature of the component.
    Type: Application
    Filed: March 21, 2012
    Publication date: October 4, 2012
    Applicant: ALSTOM TECHNOLOGY LTD
    Inventors: Sophie Betty Claire Duval, Daniel Beckel, Pierro-Daniele Grasso, Alexander Stankowski, Jaroslaw Leszek Szwedowicz
  • Patent number: 8235275
    Abstract: An amorphous braze foil (1) produced by a melt-spin process has an upper side and a lower side. The upper side and the lower side are thinly coated with a film of metallic Ni-based, Co-based, or Ni—Co-based braze powder (2) with a particle size in the nanometer range, wherein both the braze foil (1) and also the braze powder (2) additionally include grain boundary stabilizing elements as alloying elements. In addition, melting point depressants can be present in the braze foil or in the nano braze powder (2) in a commercially common quantity or with a considerably increased proportion. With the braze foil (1) coated in this manner, both the melting temperature of the braze material and also the probability of recrystallization are advantageously reduced when brazing in the adjacent base material (10).
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: August 7, 2012
    Assignee: ALSTOM Technology Ltd.
    Inventors: Alexander Stankowski, Daniel Beckel
  • Publication number: 20100072072
    Abstract: A method for restoration of a metallic coating (2) of a component (1), in which the coating includes a consumed portion (3, 4), includes a. identifying the consumed portion (3, 4) as a function of the location on the component (1); b. removing at least the consumed portion (3, 4) as a function of the location as identified in step a.; c. applying new metallic coating (7) in a manner at least compensating for the coating removed in step b.; and d. optionally verifying the quality of the restored metallic coating (2).
    Type: Application
    Filed: October 27, 2008
    Publication date: March 25, 2010
    Inventors: Daniel Beckel, Alexander Stankowski, Daniel Reitz
  • Publication number: 20090291224
    Abstract: A sheet-like substrate (34) is coated with at least one thin film (36?) composed of at least one porous ceramic layer (S?1, S?2, S?3, . . . ). A solution or a suspension of an organic and/or inorganic metal composite as starting material (14) is admixed with a mixed-in, insoluble pore former (18) and the mixture (22) is sprayed on as layer (S?1, S?2, S?3, . . . ) of a thin film (36). The pore former (18) is at least partly thermally decomposed and/or burnt out to form an at least partly open-pored structure. The process is particularly suitable for producing miniaturized devices such as fuel cells and gas sensors.
    Type: Application
    Filed: October 30, 2006
    Publication date: November 26, 2009
    Applicant: Eidgenossische Technische Hochschule Zurich
    Inventors: Daniel Beckel, Ludwig J. Gauckler
  • Publication number: 20090029195
    Abstract: A thin film consisting of at least two layers of a ceramic material, a ceramic and metallic material, or in the case of several layers a metallic material. All layers of the thin film have a maximum average particle size of approximately 500 nm and at least two layers consist of different material. In at least one of said layers, an essentially stable average particle size remains after a relaxation time, even in an increased temperature range. The mechanical stability is preferably reinforced by a supporting, essentially flat substrate. In the composite element, the thickness of the substrate is at least five times and in particular between ten and a hundred times the thickness of the thin film. The composite element can be successfully used in a miniaturised electrochemical device, in particular in a solid oxide fuel cell SOFC, a sensor or as a gas separation membrane.
    Type: Application
    Filed: October 16, 2006
    Publication date: January 29, 2009
    Applicant: Eidgenossische Technische Hochschule Zurich
    Inventors: Ludwig J. Gauckler, Daniel Beckel, Ulrich Muecke, Patrik Muller, Jennifer Rupp
  • Publication number: 20090011315
    Abstract: A composite element comprising a thin film that consists of at least two layers of an oxide-ceramic and metallic material, or a metallic material and an essentially flat substrate that supports the thin film. Said substrate is composed of a ceramicizable glass, a glass ceramic, a hybrid form or an intermediate product. To produce the substrate, selected regions are dissolved out of the photostructurable glass substrate. The composite element can be successfully used in a miniaturised electrochemical device, in particular in a solid oxide fuel cell SOFC, a sensor or as a gas separation membrane.
    Type: Application
    Filed: October 17, 2006
    Publication date: January 8, 2009
    Applicant: EIDGENOSSISCHE TECHNISCHE HOCHSCHULE ZURICH
    Inventors: Ludwig J. Gauckler, Daniel Beckel, Ulrich Muecke, Patrik Muller, Jennifer Rupp