Patents by Inventor Daniel Borrello

Daniel Borrello has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10994610
    Abstract: Systems and methods for operating a vehicle that includes an engine that may be automatically stopped and started are described. In one example, an engine may be automatically stopped in response to an electric assisted braking threshold level that is adjusted responsive to vehicle speed so that opportunities to automatically stop an engine may be increased, thereby conserving fuel.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: May 4, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Hafiz Shafeek Khafagy, Eric Michael Rademacher, Ahmed Awadi, Hussam Makkiya, Daniel Borrello
  • Publication number: 20210008980
    Abstract: Systems and methods for operating a vehicle that includes an engine that may be automatically stopped and started are described. In one example, an engine may be automatically stopped in response to an electric assisted braking threshold level that is adjusted responsive to vehicle speed so that opportunities to automatically stop an engine may be increased, thereby conserving fuel.
    Type: Application
    Filed: July 11, 2019
    Publication date: January 14, 2021
    Inventors: Hafiz Shafeek Khafagy, Eric Michael Rademacher, Ahmed Awadi, Hussam Makkiya, Daniel Borrello
  • Publication number: 20150136210
    Abstract: Solar devices with high resistance to light-induced degradation are described. A wide optical bandgap interface layer positioned between a p-doped semiconductor layer and an intrinsic semiconductor layer is made resistant to light-induced degradation through treatment with a hydrogen-containing plasma. In one embodiment, a p-i-n structure is formed with the interface layer at the p/i interface. Optionally, an additional interface layer treated with a hydrogen-containing plasma is formed between the intrinsic layer and the n-doped layer. Alternatively, a hydrogen-containing plasma is used to treat an upper portion of the intrinsic layer prior to deposition of the n-doped semiconductor layer. The interface layer is also applicable to-multi-junction solar cells with plural p-i-n structures. The p-doped and n-doped layers can optionally include sublayers of different compositions and different morphologies (e.g., microcrystalline or amorphous).
    Type: Application
    Filed: May 10, 2013
    Publication date: May 21, 2015
    Inventors: Xavier Multone, Daniel Borrello, Stefano Benagli, Johannes Meier, Ulrich Kroll, Marian Fecioru-Morariu
  • Patent number: 8981200
    Abstract: The present invention provides an improved thin film solar cell, wherein at least one additional resistive transparent conductive oxide (TCO) layer is incorporated into the solar cell. The additional resistive TCO electrically separates the conductive TCO layers acting as electrodes of such a cell and thus decreases or prevents performance losses. Furthermore, methods for the production of such solar cells are disclosed.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: March 17, 2015
    Assignee: Tel Solar AG
    Inventors: Ulrich Kroll, Evelyne Vallat-Sauvain, Daniel Borrello, Johannes Meier
  • Patent number: 8900674
    Abstract: There is provided a method of coating a substrate with a zinc oxide film. The method includes (a) providing a substrate with at least one substantially flat surface, (b) subjecting the surface at least partially to a plasma-etching process, and (c) depositing on the etched surface, a layer that includes zinc oxide. The method is particularly suitable for manufacturing solar cells.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: December 2, 2014
    Assignee: Tel Solar AG
    Inventors: Daniel Borrello, Evelyne Vallat-Sauvain, Ulrich Kroll, Johannes Meier
  • Patent number: 8846434
    Abstract: A method for manufacturing a micromorph tandem cell is disclosed. The micromorph tandem cell comprises a ?c-Si:H bottom cell and an a-Si:H top cell, an LPCVD ZnO front contact layer and a ZnO back contact in combination with a white reflector. The method comprises the steps of applying an AR—Anti-Reflecting—concept to the micromorph tandem cell; implementing an intermediate reflector in the micromorph tandem cell. The micromorph tandem cell can achieve a stabilized efficiency of 10.6%.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: September 30, 2014
    Assignee: Tel Solar AG
    Inventors: Evelyne Vallat-Sauvain, Daniel Borrello, Julien Bailat, Johannes Meier, Ulrich Kroll, Stefano Benagli, Castens Lucie, Giovanni Monteduro, Miguel Marmelo, Jochen Hoetzel, Yassine Djeridane, Jerome Steinhauser, Jean-Baptiste Orhan
  • Patent number: 8652871
    Abstract: A thin film photovoltaic device on a substrate is being realized by a method for manufacturing a p-i-n junction semiconductor layer stack with a p-type microcrystalline silicon layer, a p-type amorphous silicon layer, a buffer silicon layer comprising preferably intrinsic amorphous silicon, an intrinsic type amorphous silicon layer, and an n-type silicon layer over the intrinsic type amorphous silicon layer.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: February 18, 2014
    Assignee: Tel Solar AG
    Inventors: Stefano Benagli, Daniel Borrello, Evelyne Vallat-Sauvain, Johannes Meier, Ulrich Kroll
  • Publication number: 20130337603
    Abstract: A method for fabricating a thin film solar device that includes providing a substrate having a transparent conductive oxide (TCO) layer deposited on a surface of the substrate, the TCO layer having an as deposited sheet resistance. At least a portion of a surface of the TCO layer is exposed to a hydrogen plasma under conditions which result in a treated TCO layer having a reduced sheet resistance which is at least 10% less than the as deposited sheet resistance.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 19, 2013
    Inventors: Jerôme Steinhauser, Daniel Borrello
  • Publication number: 20120266953
    Abstract: The present invention provides a method of coating a substrate with a zinc oxide film, the method comprising the steps of: Providing a substrate with at least one substantially flat surface; Subjecting said surface at least partially to a plasma-etching process; Depositing a layer on said etched surface, the layer comprising zinc oxide. The method according to the invention is particularly suitable for manufacturing solar cells with an improved efficiency.
    Type: Application
    Filed: September 27, 2010
    Publication date: October 25, 2012
    Applicant: Oerlikon Solar AG Trubbach
    Inventors: Daniel Borrello, Evelyne Vallat-Sauvain, Ulrich Kroll, Johannes Meier
  • Publication number: 20120227799
    Abstract: A method for manufacturing a micromorph tandem cell is disclosed. The micromorph tandem cell comprises a ?c-Si:H bottom cell and an a-Si:H top cell, an LPCVD ZnO front contact layer and a ZnO back contact in combination with a white reflector. The method comprises the steps of applying an AR—Anti-Reflecting—concept to the micromorph tandem cell; implementing an intermediate reflector in the micromorph tandem cell. The micromorph tandem cell can achieve a stabilized efficiency of 10.6%.
    Type: Application
    Filed: September 17, 2010
    Publication date: September 13, 2012
    Applicant: OERLIKON SOLAR AG, TRUEBBACH
    Inventors: Evelyne Vallat-Sauvain, Daniel Borrello, Julien Bailat, Johannes Meier, Ulrich Kroll, Stefano Benagli, Castens Lucie, Giovanni Monteduro, Miguel Marmelo, Jochen Hoetzel, Yassine Djeridane, Jerome Steinhauser, Jean-Baptiste Orhan
  • Publication number: 20110240107
    Abstract: Micromorph tandem cells with stabilized efficiencies of 11.0% have been achieved on as-grown LPCVD ZnO front TCO at bottom cell thickness of just 1.3 ?m in combination with an antireflection concept. Applying an advanced LPCVD ZnO front TCO stabilized tandem cells of 10.6% have been realized at a bottom cell thickness of only 0.8 ?m. Implementing intermediate reflectors in Micromorph tandem cell devices allow for, compared to commercial SnO2, reduced optical losses when LPCVD ZnO is used. At present highest stabilized cell efficiency reached 11.3% incorporating an in-situ intermediate reflector with a bottom cell thickness of 1.6 ?m.
    Type: Application
    Filed: April 4, 2011
    Publication date: October 6, 2011
    Applicant: OERLIKON SOLAR AG, TRUBBACH
    Inventors: Johannes Meier, Stefano Benagli, Julien Bailat, Daniel Borrello, Jerome Steinhauser, Jochen Hötzel, Lucie Castens, Jean-Baptiste Orhan, Yassine Djeridane, Evelyne Vallat-Sauvain, Ulrich Kroll
  • Publication number: 20110186127
    Abstract: A thin film photovoltaic device on a substrate is being realized by a method for manufacturing a p-i-n junction semiconductor layer stack with a p-type microcrystalline silicon layer, a p-type amorphous silicon layer, a buffer silicon layer comprising preferably intrinsic amorphous silicon, an intrinsic type amorphous silicon layer, and an n-type silicon layer over the intrinsic type amorphous silicon layer.
    Type: Application
    Filed: August 26, 2009
    Publication date: August 4, 2011
    Applicant: OERLIKON SOLAR AG, TRÜBBACH
    Inventors: Stefano Benagli, Daniel Borrello, Evelyne Vallat-Sauvain, Johannes Meier, Ulrich Kroll
  • Publication number: 20100313932
    Abstract: The present invention provides an improved thin film solar cell, wherein at least one additional resistive transparent conductive oxide (TCO) layer is incorporated into the solar cell. The additional resistive TCO electrically separates the conductive TCO layers acting as electrodes of such a cell and thus decreases or prevents performance losses. Furthermore, methods for the production of such solar cells are disclosed.
    Type: Application
    Filed: December 18, 2008
    Publication date: December 16, 2010
    Applicant: OERLIKON SOLAR IP AG, TRUBBACH
    Inventors: Ulrich Kroll, Evelyne Vallat-Sauvain, Daniel Borrello, Johannes Meier