Patents by Inventor Daniel Brasen

Daniel Brasen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5861651
    Abstract: In accordance with the invention an electronic device is provided with a thin film dielectric layer of enhanced reliability. The dielectric comprises a thin film of silicon oxide having maximum concentrations of nitrogen near its major interfaces. In a field effect device, the maximum adjacent the gate enhances resistance to penetration of dopants from the gate. The secondary maximum near the channel enhances resistance to current stress. The maximum near the channel is preferably displaced slightly inward from the channel to minimize effects on carrier mobility.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: January 19, 1999
    Assignee: Lucent Technologies Inc.
    Inventors: Daniel Brasen, Eric L. Garfunkel, Martin L. Green, Evgeni Petrovich Gusev
  • Patent number: 5442205
    Abstract: A heterostructure includes a stained epitaxial layer of either silicon or germanium that is located overlying a silicon substrate, with a spatially graded Ge.sub.x Si.sub.1-x epitaxial layer overlain by a ungraded Ge.sub.x.sbsb.0 Si.sub.1-x.sbsb.0 intervening between the silicon substrate and the strained layer. Such a heterostructure can serve as a foundation for such devices as surface emitting LEDs, either n-channel or p-channel silicon-based MODFETs, and either n-channel or p-channel silicon-based MOSFETs.
    Type: Grant
    Filed: August 9, 1993
    Date of Patent: August 15, 1995
    Assignee: AT&T Corp.
    Inventors: Daniel Brasen, Eugene A. Fitzgerald, Jr., Martin L. Green, Donald P. Monroe, Paul J. Silverman, Ya-Hong Xie
  • Patent number: 5221413
    Abstract: The present invention is predicated upon the discovery by applicants that by growing germanium-silicon alloy at high temperatures in excess of about 850.degree. C. and increasing the germanium content at a gradient of less than about 25% per micrometer, one can grow on silicon large area heterostructures of graded Ge.sub.x Si.sub.1-x alloy having a low level of threading dislocation defects. With low concentrations of germanium 0.10.ltoreq..times..ltoreq.0.50), the heterolayer can be used as a substrate for growing strained layer silicon devices such as MODFETS. With high concentrations of Ge (0.65.ltoreq..times..ltoreq.1.00) the heterolayer can be used on silicon substrates as a buffer layer for indium gallium phosphide devices such as light emitting diodes and lasers. At concentrations of pure germanium (X=1.00), the heterolayer can be used for GaAs or GaAs/AlGaAs devices.
    Type: Grant
    Filed: April 24, 1991
    Date of Patent: June 22, 1993
    Assignee: AT&T Bell Laboratories
    Inventors: Daniel Brasen, Eugene A. Fitzgerald, Jr., Martin L. Green, Ya-Hong Xie
  • Patent number: 4942442
    Abstract: Radiation-induced effects discovered in layered structures of conductor and semiconductor materials are utilized in radiation-sensitive devices such as, e.g., highly linear as well as highly nonlinear position sensors. Such devices includes a structure of alternating layers of conductor and semiconductor materials, and electrical contacts are provided between which a radiation-induced voltage appears. Among suitable layer materials are silicon and titanium, and resulting devices are sensitive to electromagnetic as well as to particle radiation.
    Type: Grant
    Filed: April 27, 1989
    Date of Patent: July 17, 1990
    Assignee: American Telephone and Telegraph Company, AT&T Bell Laboratories
    Inventors: Clyde G. Bethea, Daniel Brasen, Barry F. Levine, Ronald H. Willens
  • Patent number: 4725877
    Abstract: Structures of alternating amorphous layers of titanium and a semiconductor material serve as effective interface layers between an insulator or semiconductor material and an aluminum metallization material in semiconductor devices. Such structures effectively serve to minimize interdiffusion during device manufacture without undue increase in electrical contact resistance during device operation.
    Type: Grant
    Filed: April 11, 1986
    Date of Patent: February 16, 1988
    Assignee: American Telephone and Telegraph Company, AT&T Bell Laboratories
    Inventors: Daniel Brasen, Ronald H. Willens
  • Patent number: 4620854
    Abstract: In the liquid phase epitaxy growth of Group III-V compound semiconductors using boat-slider apparatus, melt-carry-over is essentially eliminated by prebaking the metallic solvent (e.g., In shot) in the boat to form ingots and then etching the ingots in dilute nitric or hydrochloric acid prior to adding solutes (e.g., GaAs, InP, dopants). This process removes contaminants which coalesce on the ingots and cause poor wipe-off.
    Type: Grant
    Filed: October 21, 1985
    Date of Patent: November 4, 1986
    Assignee: AT&T Bell Laboratories
    Inventors: Daniel Brasen, Michael A. DiGiuseppe, Jose A. Lourenco, Subhash Mahajan
  • Patent number: 4566934
    Abstract: In the liquid phase epitaxy growth of Group III-V compound semiconductors using boat-slider apparatus, melt-carry-over is essentially eliminated by prebaking the metallic solvent (e.g., In shot) in the boat to form ingots and then etching the ingots in dilute nitric or hydrochloric acid prior to adding solutes (e.g., GaAs, InP, dopants). This process removes contaminants which coalesce on the ingots and cause poor wipe-off.
    Type: Grant
    Filed: October 28, 1982
    Date of Patent: January 28, 1986
    Assignee: AT&T Bell Laboratories
    Inventors: Daniel Brasen, Michael A. DiGiuseppe, Jose A. Lourenco, Subhash Mahajan