Patents by Inventor Daniel Bublitz

Daniel Bublitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220211268
    Abstract: Systems and methods for Broad Line Fundus Imaging (BLFI), an imaging approach that is a hybrid between confocal and widefield imaging systems, are presented. These systems and methods are focused on improving the quality and signal of broad line fundus images or imaging methods to create high contrast and high resolution fundus images. Embodiments related to improved pupil splitting, artifact removal, reflex minimization, adaptable field of view, instrument alignment and illumination details are considered.
    Type: Application
    Filed: March 4, 2022
    Publication date: July 7, 2022
    Applicant: Carl Zeiss Meditec, Inc.
    Inventors: Daniel BUBLITZ, Matthew J. EVERETT, Csaba FARKAS, Michael KEMPE, Yue QIU, Tobias SCHMITT-MANDERBACH
  • Publication number: 20220206208
    Abstract: Devices for generating a luminous distribution to illuminate an object with an optical waveguide that comprises at least one input coupling element and a plurality of replication regions are provided. The device is configured to provide a luminous distribution. Further provided are a keratometer, a projection device, a microscope, a calibration device, an area lamp, and a window.
    Type: Application
    Filed: March 31, 2020
    Publication date: June 30, 2022
    Applicant: Carl Zeiss Jena GmbH
    Inventors: Matthias HILLENBRAND, Daniel BUBLITZ, Thomas NOBIS, Martin HACKER, Tobias BUEHREN, Roman KLEINDIENST, Alexander PESCH
  • Patent number: 11284795
    Abstract: Systems and methods for Broad Line Fundus Imaging (BLFI), an imaging approach that is a hybrid between confocal and widefield imaging systems, are presented. These systems and methods are focused on improving the quality and signal of broad line fundus images or imaging methods to create high contrast and high resolution fundus images. Embodiments related to improved pupil splitting, artifact removal, reflex minimization, adaptable field of view, instrument alignment and illumination details are considered.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: March 29, 2022
    Assignees: Carl Zeiss Meditec, Inc., CARL ZEISS MEDITEC AG
    Inventors: Daniel Bublitz, Matthew J. Everett, Csaba Farkas, Michael Kempe, Yue Qiu, Tobias Schmitt-Manderbach
  • Publication number: 20220019091
    Abstract: An apparatus for supplying energy to and/or communicating with an eye implant by means of illumination radiation is provided, wherein the apparatus comprises a positioning unit, which sets an illumination position of the eye of a user, an optical input interface, by means of which the illumination radiation is suppliable to the apparatus, and an illumination optical unit, wherein the illumination optical unit focuses the supplied illumination radiation in such a way that a focus with a lateral extent of at least 0.1 mm in air is present and such that, when the eye of the user is in the set illumination position, the illumination radiation enters into the eye as a convergent beam such that the focus lies within the eye.
    Type: Application
    Filed: March 21, 2018
    Publication date: January 20, 2022
    Inventors: Thomas NOBIS, Tobias SCHMITT-MANDERBACH, Daniel BUBLITZ
  • Patent number: 11154192
    Abstract: A-confocal, interferometric measuring arrangement, a spatially resolving detector, apparatuses for positioning purposes and an evaluation unit. A beam splitter serves to output couple and image on the spatially resolving detector some of the light signal reflected by the cornea, upstream of which detector a reference light source with a delay line and a beam splitter are arranged in order to realize a superposition of the part of the light signal reflected by the cornea, to be imaged on the spatially resolving detector with a reference signal. The evaluation unit is determines the topography of the cornea from the simultaneously recorded signals of the interferometric measuring arrangement and the spatially resolving detector. The proposed solution combines a confocal FD OCT method with elements of imaging holoscopy and can thereby interferometrically measure the topography of the cornea with the necessary accuracy.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: October 26, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventor: Daniel Bublitz
  • Patent number: 11129525
    Abstract: The invention relates to a method for examining an eye of a patient by the patient themselves by means of an ophthalmological apparatus, said apparatus having front optics and an apparatus pupil. According to said method, the patient positions the ophthalmological apparatus relative to the eye, a measure of the deviation of the pupil of the eye from the apparatus pupil is determined, and a pupil correction signal is produced depending on the measure of the deviation, said pupil correction signal specifying a direction and/or a degree of the deviation and being output to the patient. The patient can use the pupil correction signal for repositioning in relation to the ophthalmological apparatus with a smaller deviation.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: September 28, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Peter Westphal, Tobias Schmitt-Manderbach, Daniel Bublitz, Peter Klopfleisch
  • Patent number: 11064879
    Abstract: A method for holoscopic, optical coherence tomography for an object, wherein the method includes providing source radiation and splitting the source radiation into illumination radiation and reference radiation, illuminating an illumination field on the object with illumination radiation, said illumination field having an areal extent transverse to the direction of incidence, collecting illumination radiation scattered back from the object as measurement radiation, separating the measurement radiation collected from the object from the illumination radiation, and overlaying the measurement radiation with reference radiation and detecting an interference signal of the overlaid radiations with at least one areal detector with a two-dimensional extent, wherein the object in the illumination field is simultaneously illuminated by more than one spatial radiation mode, wherein the radiation modes of the illumination in the illumination field are spatially and temporally coherent with one another but have a fixed ph
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: July 20, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventor: Daniel Bublitz
  • Publication number: 20210145278
    Abstract: The proposed combination device combines any tonometric metrology with a drug application to administer glaucoma medication on an eye. Several technical concepts are proposed and exemplary embodiments for rebound tonometry and air-puff tonometry are shown. However other methods such as optical coherence elastography (OCE) could also be used. The Solutions provide home care tonometry offerings which host the capability to administer glaucoma medication.
    Type: Application
    Filed: April 29, 2019
    Publication date: May 20, 2021
    Inventors: Rudolf Murai VON BÜNAU, Johannes KINDT, Martin HACKER, Tobias BÜHREN, Thomas K. FITZMORRIS, Daniel BUBLITZ, Steffen WAGNER, Wibke HELLMICH
  • Patent number: 10582852
    Abstract: Methods and apparatuses for fundus imaging are presented that use sequential selective illumination patterns to suppress unwanted reflections, scattering and haze from various optical components of a fundus-viewing instrument. This is particularly the case with those unwanted reflections produced by the objective lens contained within said instrument.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: March 10, 2020
    Assignee: CARL ZEISS MEDITEC AG
    Inventors: Daniel Bublitz, Lothar Müller, Andrea Berner
  • Patent number: 10568503
    Abstract: An optical coherence tomograph includes a wavelength tunable illuminating device, an illumination and measurement beam path with a dividing element and a scanner and a front optical unit and a reference beam path, a detection beam path and a flat panel detector. A beam splitter conducts the separated measurement radiation to the detection beam path and an optical element acts only on the illumination radiation. The optical element sets the numerical aperture of the illumination of the illumination field in the eye. An optical element acts only on the measurement radiation and sets the numerical aperture with which measurement radiation is collected in the eye. An aperture is arranged in front of the flat panel detector in an intermediate image plane and defines the size of an object field. The flat panel detector has a spatial resolution of 4 to 100 pixels in a direction.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: February 25, 2020
    Assignee: Carl Zeiss Meditec AG
    Inventors: Daniel Bublitz, Christoph Nieten, Lars Omlor, Kai Wicker
  • Publication number: 20200054207
    Abstract: A-confocal, interferometric measuring arrangement, a spatially resolving detector, apparatuses for positioning purposes and an evaluation unit. A beam splitter serves to output couple and image on the spatially resolving detector some of the light signal reflected by the cornea, upstream of which detector a reference light source with a delay line and a beam splitter are arranged in order to realize a superposition of the part of the light signal reflected by the cornea, to be imaged on the spatially resolving detector with a reference signal. The evaluation unit is determines the topography of the cornea from the simultaneously recorded signals of the interferometric measuring arrangement and the spatially resolving detector. The proposed solution combines a confocal FD OCT method with elements of imaging holoscopy and can thereby interferometrically measure the topography of the cornea with the necessary accuracy.
    Type: Application
    Filed: February 21, 2018
    Publication date: February 20, 2020
    Applicant: Carl Zeiss Meditec AG
    Inventor: Daniel BUBLITZ
  • Publication number: 20200000336
    Abstract: Systems and methods for Broad Line Fundus Imaging (BLFI), an imaging approach that is a hybrid between confocal and widefield imaging systems, are presented. These systems and methods are focused on improving the quality and signal of broad line fundus images or imaging methods to create high contrast and high resolution fundus images. Embodiments related to improved pupil splitting, artifact removal, reflex minimization, adaptable field of view, instrument alignment and illumination details are considered.
    Type: Application
    Filed: September 9, 2019
    Publication date: January 2, 2020
    Applicant: Carl Zeiss Meditec, Inc.
    Inventors: Daniel BUBLITZ, Matthew J. EVERETT, Csaba FARKAS, Michael KEMPE, Yue QIU, Tobias SCHMITT-MANDERBACH
  • Patent number: 10517761
    Abstract: Systems and methods for localizing intraocular lens and/or existing refractive index patterns, to laser write-patterns, and to refractive index patterns in order to modify the refractive index by application of femtosecond laser pulses. OCT-based confocal detection and sectional image systems are provided for localization purposes, the systems being particularly suitable for the detection of phase patterns in addition to the localization of the IOL. With respect to laser write-patterns, the modification of existing refractive index patterns in the IOL is carried out by destroying existing structures or supplementing existing refractive index patterns.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: December 31, 2019
    Assignee: Carl Zeiss Meditec AG
    Inventors: Gerhard Krampert, Johannes Kindt, Daniel Bublitz, Robert Pomraenke, Martin Kühner
  • Publication number: 20190380573
    Abstract: A method for holoscopic, optical coherence tomography for an object, wherein the method includes providing source radiation and splitting the source radiation into illumination radiation and reference radiation, illuminating an illumination field on the object with illumination radiation, said illumination field having an areal extent transverse to the direction of incidence, collecting illumination radiation scattered back from the object as measurement radiation, separating the measurement radiation collected from the object from the illumination radiation, and overlaying the measurement radiation with reference radiation and detecting an interference signal of the overlaid radiations with at least one areal detector with a two-dimensional extent, wherein the object in the illumination field is simultaneously illuminated by more than one spatial radiation mode, wherein the radiation modes of the illumination in the illumination field are spatially and temporally coherent with one another but have a fixed ph
    Type: Application
    Filed: June 13, 2019
    Publication date: December 19, 2019
    Applicant: Carl Zeiss Meditec AG
    Inventor: Daniel Bublitz
  • Patent number: 10441167
    Abstract: Systems and methods for Broad Line Fundus Imaging (BLFI), an imaging approach that is a hybrid between confocal and widefield imaging systems, are presented. These systems and methods are focused on improving the quality and signal of broad line fundus images or imaging methods to create high contrast and high resolution fundus images. Embodiments related to improved pupil splitting, artifact removal, reflex minimization, adaptable field of view, instrument alignment and illumination details are considered.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: October 15, 2019
    Assignees: Carl Zeiss Meditec AG, CARL ZEISS MEDITEC, INC.
    Inventors: Daniel Bublitz, Matthew J. Everett, Csaba Farkas, Michael Kempe, Yue Qiu, Tobias Schmitt-Manderbach
  • Publication number: 20190254514
    Abstract: The invention relates to a method for examining an eye of a patient by the patient themselves by means of an ophthalmological apparatus, said apparatus having front optics and an apparatus pupil. According to said method, the patient positions the ophthalmological apparatus relative to the eye, a measure of the deviation of the pupil of the eye from the apparatus pupil is determined, and a pupil correction signal is produced depending on the measure of the deviation, said pupil correction signal specifying a direction and/or a degree of the deviation and being output to the patient. The patient can use the pupil correction signal for repositioning in relation to the ophthalmological apparatus with a smaller deviation.
    Type: Application
    Filed: November 7, 2017
    Publication date: August 22, 2019
    Applicant: Carl Zeiss Meditec AG
    Inventors: Peter Westphal, Tobias Schmitt-Manderbach, Daniel Bublitz, Peter Klopfleisch
  • Publication number: 20190246898
    Abstract: A method for measuring distances and angles in the human eye in a highly sensitive manner in order to insert an intraocular lens having the correct refractive power during a cataract operation. The method is based on low coherence interferometry using the dual beam method, in which the time domain signals are detected using a spatially resolving sensor. The delay line of the interferometric measuring arrangement employed is continuously tuned and the low coherence illumination light source used to illuminate the retina of an eye is periodically modulated in terms of its brightness. The light signals reflected by the retina are captured by a sensor and detected in spatially resolved fashion. The disclosed method is used to measure the eye length of a cataractous eye. Even though the method is provided, in particular, for measuring already cataractous eyes, it can be used, in principle, to measure the axial length of all eyes.
    Type: Application
    Filed: July 14, 2017
    Publication date: August 15, 2019
    Applicants: Carl Zeiss Meditec AG, Carl Zeiss AG
    Inventors: Daniel BUBLITZ, Roland BERGNER, Manfred DICK
  • Publication number: 20190223715
    Abstract: An illumination system for producing a spatially distributed illumination pattern for measuring the cornea of an eye and, in particular, for determining the topography of the eye. In so doing, the system facilitates distance-independent measurements. The illumination system includes an illumination unit, an optical element for collimating the illumination light and a unit for producing a spatially distributed illumination pattern in the form of a fraxicon. In particular, the illumination unit includes a plurality of illumination modules which are arranged such that each illumination module illuminates part of the fraxicon, and consequently a full-area illumination is facilitated. The system for producing a spatially distributed illumination pattern serves to determine the topography of the cornea of an eye. Here, the system is designed as a compact module, and so it can be easily combined with other measurement systems, without interfering with the beam paths thereof.
    Type: Application
    Filed: August 31, 2017
    Publication date: July 25, 2019
    Applicant: Carl Zeiss Meditec AG
    Inventors: Beate BÖHME, Rico FUCHS, Günter RUDOLPH, Michael GÜNTZSCHEL, Jörg MEISSNER, Thomas MOHR, Daniel BUBLITZ
  • Patent number: 10244940
    Abstract: An optical coherence tomograph that provides wavelength tunable source radiation and an illumination and measurement beam path, a dividing element that divides source radiation into illumination radiation and reference radiation, and collects measurement radiation. The illumination and measurement beam path has scanner. A detection beam path receives measurement radiation and reference radiation and conducts them onto at least one flat panel detector in a superposed manner. A beam splitter separates the measurement radiation from the illumination radiation. The beam splitter conducts the separated measurement radiation to the detection beam path and sets the numerical aperture of the illumination of the illumination field in the eye. An optical element sets the numerical aperture with which the measurement radiation is collected in the eye and a multi-perforated aperture defines the size of an object field and a number of object spots, from which the measurement radiation reaches the flat panel detector.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: April 2, 2019
    Assignee: Carl Zeiss Meditec AG
    Inventors: Daniel Bublitz, Christoph Nieten
  • Patent number: D926015
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: July 27, 2021
    Assignee: APEX BRANDS, INC.
    Inventors: Scott Daniel Bublitz, Ralf Zerweck, Bernhard Eigen