Patents by Inventor Daniel Buchmueller

Daniel Buchmueller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10663529
    Abstract: An illustrative battery charging device may identify a battery to be charged, and charge the identified battery using charge settings that are optimized for the identified battery. In some embodiments, the battery charging device may determine the optimized settings based on monitoring charging performance and discharge activities of the battery over time. The battery charging device may exchange data with a battery management service device, such as by exchanging battery health information, battery settings, and/or other data. The battery charging device may determine charge setting and times to charge a battery that is intended to power an unmanned aerial vehicle to complete a flight path.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: May 26, 2020
    Assignee: Amazon Technologies, Inc.
    Inventors: Michael Bolotski, Daniel Buchmueller, Nathan Stuart Friendly, Fabian Hensel, Walker Chamberlain Robb, Joshua White Traube
  • Patent number: 10647427
    Abstract: A tether compensated unmanned aerial vehicle (UAV) is described. In one embodiment, the UAV includes a winch with a tether to lower an item from the UAV for delivery, a tether compensation mechanism configured to contact the tether as it extends from the winch, and a flight controller to control a flight path of the UAV. The flight controller is also configured to direct the tether compensation mechanism to clamp the tether based on the flight path of the UAV. Further, based on movement identified in the tether using a sensor, a tether response controller can determine a complementary response and direct the tether compensation mechanism to brace the tether against the movement. Thus, the tether compensation mechanism can help stabilize sway or movement in the tether, which can help prevent the tether from undesirable swinging.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: May 12, 2020
    Assignee: Amazon Technologies, Inc.
    Inventor: Daniel Buchmueller
  • Patent number: 10543918
    Abstract: This disclosure describes a configuration of a multi-propeller aerial vehicle (MPAV). The components of the MPAV are designed for easy manufacture, assembly, configuration and replacement. Likewise, the configuration of the MPAV is designed for increased flight duration.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: January 28, 2020
    Assignee: Amazon Technologies, Inc.
    Inventors: Gur Kimchi, Fabian Thomas Hensel, Scott A. Green, Daniel Buchmueller
  • Publication number: 20200013298
    Abstract: A system and method for operating an automated aerial vehicle are provided wherein influences of ground effects (e.g., which may increase the effective thrusts of propellers by interfering with the respective airflows) are utilized for sensing the ground or other surfaces. In various implementations, operating parameters of the automated aerial vehicle are monitored to determine when ground effects are influencing the parameters associated with the propellers, which correspondingly indicate proximities to a surface (e.g., the ground). Such ground effect sensing techniques may be utilized as a backup to other sensors (e.g., which may be determined to not be functioning properly and/or may be otherwise inhibited due factors such as to rain, snow, fog, reflections, bright sunlight, etc.
    Type: Application
    Filed: August 29, 2019
    Publication date: January 9, 2020
    Inventors: Amir Navot, Brian C. Beckman, Daniel Buchmueller, Gur Kimchi, Fabian Hensel, Scott A. Green, Brandon William Porter, Severan Sylvain Jean-Michel Rault
  • Publication number: 20190347942
    Abstract: This disclosure describes an unmanned aerial vehicle (“UAV”) configured to autonomously deliver items of inventory to various destinations. The UAV may receive inventory information and a destination location and autonomously retrieve the inventory from a location within a materials handling facility, compute a route from the materials handling facility to a destination and travel to the destination to deliver the inventory.
    Type: Application
    Filed: July 25, 2019
    Publication date: November 14, 2019
    Inventors: Gur Kimchi, Daniel Buchmueller, Scott A. Green, Brian C. Beckman, Scott Isaacs, Amir Navot, Fabian Hensel, Avi Bar-Zeev, Severan Sylvain Jean-Michel Rault
  • Patent number: 10450065
    Abstract: Stabilized delivery using an Unmanned Aerial Vehicle (UAV) is described. In one embodiment, the UAV includes a flight controller configured to control a flight path of the UAV, a winch mechanism secured to an underside of the UAV, a platform tethered to and extendable from the winch mechanism, and a ballast system configured to stabilize the platform. The winch mechanism may be relied upon to drop an item for delivery without landing the UAV. The winch mechanism can include a first winch mechanism secured to the UAV at a first orientation and a second winch mechanism secured to the UAV at a second orientation. Because the winch mechanism may give rise to certain design and operating considerations, various active and passive flight and/or ballast control systems are described. These systems maintain an orientation of the UAV, the platform, and/or the item during one or more stages of airborne drop delivery.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: October 22, 2019
    Assignee: AMAZON TECHNOLOGIES, INC.
    Inventors: Daniel Buchmueller, Louis LeRoi LeGrand, III, Jack Erdozain, Jr., Scarlett Elizabeth Koller, Eric Alexander Riehl, Trevor Barr Walker
  • Patent number: 10410527
    Abstract: A system and method for operating an automated aerial vehicle are provided wherein influences of ground effects (e.g., which may increase the effective thrusts of propellers by interfering with the respective airflows) are utilized for sensing the ground or other surfaces. In various implementations, operating parameters of the automated aerial vehicle are monitored to determine when ground effects are influencing the parameters associated with each of the propellers, which correspondingly indicate proximities to a surface (e.g., the ground). Utilizing such techniques, proximities of different portions of an automated aerial vehicle to the ground or other surfaces may be determined (e.g., for detecting issues with an uneven landing area, a sloped ground, etc.).
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: September 10, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Amir Navot, Brian C. Beckman, Daniel Buchmueller, Gur Kimchi, Fabian Hensel, Scott A. Green, Brandon William Porter, Severan Sylvain Jean-Michel Rault
  • Patent number: 10403155
    Abstract: This disclosure describes an unmanned aerial vehicle (“UAV”) configured to autonomously deliver items of inventory to various destinations. The UAV may receive inventory information and a destination location and autonomously retrieve the inventory from a location within a materials handling facility, compute a route from the materials handling facility to a destination and travel to the destination to deliver the inventory.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: September 3, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Gur Kimchi, Daniel Buchmueller, Scott A. Green, Brian C. Beckman, Scott Isaacs, Amir Navot, Fabian Hensel, Avi Bar-Zeev, Severan Sylvain Jean-Michel Rault
  • Patent number: 10373104
    Abstract: Aspects of modular airborne delivery are described. When a shipping container is provided to an airborne carrier for delivery, the airborne carrier may assess weather across a route for airborne delivery of the shipping container, evaluate an approach to drop the shipping container at a delivery zone, and calculate a remaining amount of time until a target delivery time, for example. The airborne carrier may then select components to assemble a modular unmanned aerial vehicle (UAV) based on those or other factors, and assemble the UAV using the selected components. The modular UAV may then be directed to deliver the shipping container according to instructions from the airborne carrier. According to the concepts described herein, flexibility and other advantages may be achieved using modular UAVs for airborne delivery.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: August 6, 2019
    Assignee: AMAZON TECHNOLOGIES, INC.
    Inventors: Daniel Buchmueller, Jack Erdozain, Gur Kimchi, Brandon William Porter, Ricky Dean Welsh
  • Patent number: 10322881
    Abstract: The application describes a system and process for anticipating when a user will leave a selection area within a materials handling facility and determining if a notification requesting that the user provide a tote of picked items to a drop off location should be presented to the user. For example, a user may be asked to provide items picked from a selection area for processing, such as packing, while the user is picking items from other selection areas of a materials handling facility.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: June 18, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Ohil Krishnamurthy Manyam, Jon Robert Ducrou, Anamika Sinha, Long Xuan Nguyen, Daniel Buchmueller, Ramanathan Palaniappan, Michel Leonard Goldstein, Raymond Wheekyun Lim
  • Patent number: 10259591
    Abstract: This disclosure describes an unmanned aerial vehicle that may be configured during flight to optimize for agility or efficiency.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: April 16, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Gur Kimchi, Daniel Buchmueller, Brian C. Beckman, Amir Navot
  • Patent number: 10220964
    Abstract: This disclosure describes systems, methods, and apparatus for automating the verification of aerial vehicle sensors as part of a pre-flight, flight departure, in-transit flight, and/or delivery destination calibration verification process. At different stages, aerial vehicle sensors may obtain sensor measurements about objects within an environment, the obtained measurements may be processed to determine information about the object, as presented in the measurements, and the processed information may be compared with the actual information about the object to determine a variation or difference between the information. If the variation is within a tolerance range, the sensor may be auto adjusted and operation of the aerial vehicle may continue. If the variation exceeds a correction range, flight of the aerial vehicle may be aborted and the aerial vehicle routed for a full sensor calibration.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: March 5, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Samuel Sperindeo, Benji Barash, Yves Albers Schoenberg, Daniel Buchmueller
  • Patent number: 10207794
    Abstract: This disclosure describes a system and method for determining the center of gravity of a payload engaged by an automated aerial vehicle and adjusting components of the automated aerial vehicle and/or the engagement location with the payload so that the center of gravity of the payload is within a defined position with respect to the center of gravity of the automated aerial vehicle. Adjusting the center of gravity to be within a defined position improves the efficiency, maneuverability and safety of the automated aerial vehicle. In some implementations, the stability of the payload may also be determined to ensure that the center of gravity does not change or shift during transport due to movement of an item of the payload.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: February 19, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Brian C. Beckman, Brandon William Porter, Gur Kimchi, Daniel Buchmueller, Jeffrey P. Bezos, Frederik Schaffalitzky, Amir Navot
  • Patent number: 10178315
    Abstract: This disclosure describes optimizing a clarity of images captured by a camera exposed to vibrations, such as a camera mounted on an aerial vehicle. The vibrations can be caused by rotors, motors, forces (e.g., lift, drag, etc.) acting on the UAV, environmental factors (e.g., wind, turbulence, etc.), or any other force that may cause asymmetry. An inertial measurement unit can measure the vibrations and determine a vibrational pattern imposed upon the camera. The inertial measurement unit can identify one or more dead points in the vibrational pattern, and times associated therewith. The inertial measurement unit can send the one or more dead points and/or the times associated therewith to the camera, and cause the camera to capture and/or store images at times corresponding to the one or more dead points to enable capture of images with little or no blur.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: January 8, 2019
    Assignee: Amazon Technologies, Inc.
    Inventor: Daniel Buchmueller
  • Patent number: 10149115
    Abstract: Systems, methods, and apparatus are provided for enabling orientation of directional antennas even when one or more of the directional antennas are moving. Position information for each directional antenna is transmitted using an omnidirectional antenna transmitting at a low bandwidth and a low power. The position information of the directional antennas is used to orient the directional antennas so that a high bandwidth, low power wireless connection can be enabled and/or maintained between the directional antennas. The position information is periodically transmitted and the orientation of the directional antennas is updated as one or more of the directional antennas move so that the wireless connection between the directional antennas is maintained.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: December 4, 2018
    Assignee: Amazon Technologies, Inc.
    Inventors: Daniel Buchmueller, Ronald Joseph Degges, Jr., Jin Dong Kim, Gur Kimchi, Sang Eun Lee, Subram Narasimhan, Koohyun Um
  • Publication number: 20180308370
    Abstract: This disclosure is directed to a detection and avoidance apparatus for an unmanned aerial vehicle (“UAV”) and systems, devices, and techniques pertaining to automated object detection and avoidance during UAV flight. The system may detect objects within the UAV's airspace through acoustic, visual, infrared, multispectral, hyperspectral, or object detectable signal emitted or reflected from an object. The system may identify the source of the object detectable signal by comparing features of the received signal with known sources signals in a database. The features may include, for example, an acoustic signature emitted or reflected by the object. Furthermore, a trajectory envelope for the object may be determined based on characteristic performance parameters for the object such as cursing speed, maneuverability, etc. The UAV may determine an optimized flight plan based on the trajectory envelopes of detected objects within the UAV's airspace.
    Type: Application
    Filed: April 7, 2017
    Publication date: October 25, 2018
    Inventors: Daniel Buchmueller, Nathan Michael Paczan
  • Publication number: 20180308372
    Abstract: This disclosure is directed to a detection and avoidance apparatus for an unmanned aerial vehicle (“UAV”) and systems, devices, and techniques pertaining to automated object detection and avoidance during UAV flight. The system may detect objects within the UAV's airspace through acoustic, visual, infrared, multispectral, hyperspectral, or object detectable signal emitted or reflected from an object. The system may identify the source of the object detectable signal by comparing features of the received signal with known sources signals in a database. The features may be, for example, a light arrangement or number of lights associated with the object. Furthermore, a trajectory envelope for the object may be determined based on characteristic performance parameters for the object such as cursing speed, maneuverability, etc. The UAV may determine an optimized flight plan based on the trajectory envelopes of detected objects within the UAV's airspace to avoid the detected objects.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 25, 2018
    Inventors: Daniel Buchmueller, Nathan Michael Paczan
  • Patent number: 10109209
    Abstract: This disclosure is directed to a detection and avoidance apparatus for an unmanned aerial vehicle (“UAV”) and systems, devices, and techniques pertaining to automated object detection and avoidance during UAV flight. The system may detect objects within the UAV's airspace through acoustic, visual, infrared, multispectral, hyperspectral, or object detectable signal emitted or reflected from an object. The system may identify the source of the object detectable signal by comparing features of the received signal with known sources signals in a database. The features may be, for example, a light arrangement or number of lights associated with the object. Furthermore, a trajectory envelope for the object may be determined based on characteristic performance parameters for the object such as cursing speed, maneuverability, etc. The UAV may determine an optimized flight plan based on the trajectory envelopes of detected objects within the UAV's airspace to avoid the detected objects.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: October 23, 2018
    Assignee: Amazon Technologies, Inc.
    Inventors: Daniel Buchmueller, Nathan Michael Paczan
  • Patent number: 10109204
    Abstract: This disclosure is directed to a detection and avoidance apparatus for an unmanned aerial vehicle (“UAV”) and systems, devices, and techniques pertaining to automated object detection and avoidance during UAV flight. The system may detect objects within the UAV's airspace through acoustic, visual, infrared, multispectral, hyperspectral, or object detectable signal emitted or reflected from an object. The system may identify the source of the object detectable signal by comparing features of the received signal with known sources signals in a database. The features may include, for example, an acoustic signature emitted or reflected by the object. Furthermore, a trajectory envelope for the object may be determined based on characteristic performance parameters for the object such as cursing speed, maneuverability, etc. The UAV may determine an optimized flight plan based on the trajectory envelopes of detected objects within the UAV's airspace.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: October 23, 2018
    Assignee: Amazon Technologies, Inc.
    Inventors: Daniel Buchmueller, Nathan Michael Paczan
  • Patent number: 10096255
    Abstract: This disclosure describes an unmanned aerial vehicle (“UAV”) and system that may perform one or more techniques for protecting objects from damage resulting from an unintended or uncontrolled impact by a UAV. As described herein, various implementations utilize a damage avoidance system that detects a risk of damage to an object caused by an impact from a UAV that has lost control and takes steps to reduce or eliminate that risk. For example, the damage avoidance system may detect that the UAV has lost power and/or is falling at a rapid rate of descent such that, upon impact, there is a risk of damage to an object with which the UAV may collide. Upon detecting the risk of damage and prior to impact, the damage avoidance system activates a damage avoidance system having one or more protection elements that work in concert to reduce or prevent damage to the object upon impact by the UAV.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: October 9, 2018
    Assignee: Amazon Technologies, Inc.
    Inventors: Jon Lewis Lindskog, Daniel Buchmueller, Samuel Park, Louis LeRoi LeGrand, III, Ricky Dean Welsh, Fabian Hensel, Christopher Aden Maynor, Ishwarya Ananthabhotla, Scott Michael Wilcox