Patents by Inventor Daniel C. Di Fiore

Daniel C. Di Fiore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9660278
    Abstract: A fuel cell system that determines the phase transition from water to gas through a bleed/drain valve in a water separation device. The fuel cell system includes a fuel cell stack having an anode side and a cathode side. An injector injects hydrogen gas into the anode side of the fuel cell stack. The water separation device receives an anode exhaust gas from the anode side of the fuel cell stack, where the water separation device includes a water holding reservoir. A controller controls the injector and the bleed/drain valve and determines when the bleed/drain valve transitions from draining water to bleeding the anode exhaust gas by comparing the flow rate through the water separation device and the flow rate through the injector.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: May 23, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Patrick Frost, Daniel C. Di Fiore, Ralf Senner
  • Patent number: 9564648
    Abstract: A system and method for quantifying an anode leak location in a fuel cell system. The system and method include determining there is a leak in an anode sub-system of a fuel cell stack and estimating a first effective leak area using a first leak flow value and first operating parameters. The system and method also include increasing airflow to a cathode side of the fuel cell stack and estimating a second leak effective area using a second leak flow value and second operating parameters. The system and method further include comparing the first leak effective area to the second leak effective area and determining an anode outflow leak location based on the comparison between the first and second leak effective areas.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: February 7, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel C. Di Fiore, Manish Sinha, Steven R. Falta, Matthew A. Lang
  • Patent number: 9178232
    Abstract: A system and method for utilizing a pressurized volume of oxygen in a cathode plumbing of a fuel cell system. The system and method includes calculating an air/oxygen balance that is based on an air balance and an oxygen balance in the cathode plumbing. The system and method further include determining the number of moles of oxygen available for fuel cell chemical reactions using the calculated air/oxygen balance and drawing current from a fuel cell stack using the moles of oxygen available for fuel cell chemical reactions.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 3, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Joseph Mussro, Yanyan Zhang, Daniel C. Di Fiore
  • Patent number: 9105888
    Abstract: A combined water drain and diluent gas purge valve routes fluid from the anode side of a fuel cell to the cathode inlet. When a purge of diluent gas is requested, the valve opens, draining any liquid present in the sump of a water separation device, for example. After the liquid has drained, the diluent gas is purged. An anode bleed model using fuel injector feedback can determine the amount of gas exiting the valve, and can request the valve to close once the required amount of diluent is purged. During operation, an amount of hydrogen may exit the valve. Hydrogen passing through the valve can be catalytically consumed once it reaches the cathode electrode, causing the cathode exhaust, and the fuel cell exhaust to have a reduced hydrogen content.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: August 11, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven R. Falta, Matthew A. Lang, Daniel C. Di Fiore
  • Patent number: 9105887
    Abstract: A system and method for controlling an injector in a fuel cell system. The method provides a variety of injector pulse widths for at least one predetermined duty cycle and determines an injector close time for each of the variety of injector pulse widths. The method also determines an error for the at least one predetermined duty cycle based on each of the provided injector pulse widths and uses the injector pulse width with the lowest error for the at least one predetermined duty cycle.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: August 11, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel C. Di Fiore, Matthew A. Lang
  • Patent number: 9080938
    Abstract: A system and method for detecting an anode pressure sensor failure in a fuel cell system. The system and method include a controller that sets an initial minimum anode pressure sensor value and an initial maximum anode pressure sensor value. The controller determines a desired time interval for sampling anode pressure measurements and determines a total number of samples of anode pressure measurements to be collected by the controller from an anode pressure sensor. The controller also compares a pressure difference between the initial or a measured minimum anode pressure and the initial or a measured maximum anode pressure to a predetermined pressure difference threshold and sets a pressure sensor fault if the pressure difference between the initial or measured minimum anode pressure and the initial or maximum anode pressure is less than the predetermined pressure difference threshold.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: July 14, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Jun Cai, Daniel C. Di Fiore, Steven R. Falta, Sergio E. Garcia, Carol A. Galskoy
  • Patent number: 9018961
    Abstract: A system and method for determining whether an anode injector that injects hydrogen gas into an anode side of a fuel cell stack has failed. The method includes monitoring a voltage of the fuel cell stack and performing spectral analysis of the stack voltage to identify amplitude peaks in the stack voltage. The method further includes determining whether the spectral analysis of the stack voltage has identified an amplitude peak at a location where an amplitude peak should occur if the injector is operating properly. If no amplitude peak is identified at that location, then the method determines that the injector is not operating properly. If an amplitude peak is identified at that location, then the method compares the amplitude peak to the desired amplitude peak to identify if it is within a threshold to determine if the injector is operating properly.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: April 28, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Manish Sinha, Daniel C. Di Fiore, John C. Fagley, Steven R. Falta
  • Patent number: 8974975
    Abstract: A method for determining a rate of accumulation of nitrogen in an anode side of a fuel cell stack. The method includes determining a concentration of nitrogen in an anode loop and determining a number of moles of nitrogen in the anode loop. The method also includes determining a rate of accumulation of nitrogen in the anode loop and determining a permeability factor of nitrogen through fuel cell membranes in the fuel cell stack using the determined rate of accumulation of nitrogen in the anode loop.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: March 10, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel C. Di Fiore, Thomas W. Tighe
  • Publication number: 20140335432
    Abstract: Apparatus, methods, and systems for estimating hydrogen concentration and/or pressure in an anode compartment of a fuel cell stack in a fuel cell vehicle. In some implementations, the estimates are based on a correlation between a transient dip in voltage in response to an anode to cathode bleed event and a concentration of hydrogen in the anode compartment of a fuel cell stack. Some implementations may comprise initiating a bleed event, sensing a transient dip in voltage in response to the bleed event, and using the correlation to calculate an estimate of a concentration and/or pressure of the gas in the anode compartment. The sensitivity of the correlation and hence the accuracy of estimation may change with the power level and may be accounted for in the correlation.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 13, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: MANISH SINHA, MATTHEW A. LANG, DANIEL C. DI FIORE, STEVEN R. FALTA
  • Publication number: 20140272644
    Abstract: A system and method for utilizing a pressurized volume of oxygen in a cathode plumbing of a fuel cell system. The system and method includes calculating an air/oxygen balance that is based on an air balance and an oxygen balance in the cathode plumbing. The system and method further include determining the number of moles of oxygen available for fuel cell chemical reactions using the calculated air/oxygen balance and drawing current from a fuel cell stack using the moles of oxygen available for fuel cell chemical reactions.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Joseph Mussro, Yanyan Zhang, Daniel C. Di Fiore
  • Patent number: 8828615
    Abstract: A fuel cell system that determines the concentration of hydrogen gas in an anode loop. The fuel cell system includes at least one fuel cell, an anode inlet, an anode outlet, an anode loop, a source of hydrogen gas and an injector for injecting the hydrogen gas. First and second pressure sensors are provided in the anode loop and are spaced a known distance from each other. A controller responsive to the output signals from the first and second pressure sensors filters the sensor signals from the first and second pressure sensors and determines the concentration of hydrogen gas in the anode loop based on the time difference between the filtered sensor signal from the first pressure sensor and the filtered sensor signal from the second pressure sensor.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: September 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Thomas W. Tighe, Daniel C. Di Fiore
  • Patent number: 8785071
    Abstract: A system and method for controlling hydrogen gas flow to an anode side of a fuel cell stack using a pressure regulator in the event that an injector that normally injects the hydrogen gas into the fuel cell stack has failed in a stuck open position. During normal operation, the control of the injector is determined based on the pressure of an anode sub-system and the position of the pressure regulator is determined based on a supply pressure between the pressure regulator and the injector. If it is determined that the injector is stuck in an open position, then the position of the pressure regulator is controlled to the anode pressure instead of the supply pressure. If the pressure regulator is an electrical pressure regulator, then it is pulsed to mimic normal system operation. Alternately, another valve, such as a shut-off valve, can be employed to provide the flow pulsing.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: July 22, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven R. Falta, Rainer Pechtold, Daniel C. Di Fiore, Donald H. Keskula, Matthew A. Lang, Michael Leykauf, Joseph N. Lovria, Oliver Maier
  • Publication number: 20140162171
    Abstract: A system and method for quantifying an anode leak location in a fuel cell system. The system and method include determining there is a leak in an anode sub-system of a fuel cell stack and estimating a first effective leak area using a first leak flow value and first operating parameters. The system and method also include increasing airflow to a cathode side of the fuel cell stack and estimating a second leak effective area using a second leak flow value and second operating parameters. The system and method further include comparing the first leak effective area to the second leak effective area and determining an anode outflow leak location based on the comparison between the first and second leak effective areas.
    Type: Application
    Filed: December 6, 2012
    Publication date: June 12, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Daniel C. Di Fiore, Manish Sinha, Steven R. Falta, Matthew A. Lang
  • Patent number: 8701468
    Abstract: A method for determining the flow of an anode gas out of an anode sub-system. The method includes providing pressure measurements at predetermined sample times over a predetermined sample period and using the pressure measurements to calculate a slope of a line defining a change of the pressure from the beginning of the time period to the end of the time period. The slope of the pressure line is then used in a flow equation to determine the amount of gas that flows out of the anode sub-system, which can be through a valve or by system leaks.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: April 22, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel C. Di Fiore, Jan Biebrach
  • Patent number: 8673515
    Abstract: A system and method for preventing anode reactant starvation. The system includes a hydrogen source, an anode bleed valve, and a cell voltage monitor. The system also includes an anode sub-system pressure sensor and a controller configured to control the anode sub-system. The controller determines the average cell voltage and estimates the hydrogen molar fraction and/or nitrogen molar fraction in the anode sub-system. The controller also receives measurement data from the cell voltage monitor and the pressure sensor, and determines whether there is a decrease in the minimum cell voltage in response to changes in the anode pressure. If the controller detects a decrease in the minimum cell voltage in response to changes in the anode pressure, the controller corrects for the decrease by increasing anode pressure and/or by decreasing the molar fraction of nitrogen in the anode sub-system.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: March 18, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel I. Harris, Matthew A. Lang, Daniel C. Di Fiore
  • Publication number: 20140033801
    Abstract: A system and method for determining whether an anode injector that injects hydrogen gas into an anode side of a fuel cell stack has failed. The method includes monitoring a voltage of the fuel cell stack and performing spectral analysis of the stack voltage to identify amplitude peaks in the stack voltage. The method further includes determining whether the spectral analysis of the stack voltage has identified an amplitude peak at a location where an amplitude peak should occur if the injector is operating properly. If no amplitude peak is identified at that location, then the method determines that the injector is not operating properly. If an amplitude peak is identified at that location, then the method compares the amplitude peak to the desired amplitude peak to identify if it is within a threshold to determine if the injector is operating properly.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 6, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Manish Sinha, Daniel C. Di Fiore, John C. Fagley, Steven R. Falta
  • Publication number: 20140026633
    Abstract: A system and method for detecting an anode pressure sensor failure in a fuel cell system. The system and method include a controller that sets an initial minimum anode pressure sensor value and an initial maximum anode pressure sensor value. The controller determines a desired time interval for sampling anode pressure measurements and determines a total number of samples of anode pressure measurements to be collected by the controller from an anode pressure sensor. The controller also compares a pressure difference between the initial or a measured minimum anode pressure and the initial or a measured maximum anode pressure to a predetermined pressure difference threshold and sets a pressure sensor fault if the pressure difference between the initial or measured minimum anode pressure and the initial or maximum anode pressure is less than the predetermined pressure difference threshold.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 30, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jun Cai, Daniel C. Di Fiore, Steven R. Falta, Sergio E. Garcia, Carol A. Galskoy
  • Patent number: 8603688
    Abstract: A system for determining the concentration of hydrogen in an anode sub-system of a fuel cell system. The fuel cell system includes at least one fuel cell, an anode inlet, an anode outlet, an anode recirculation line, a source of hydrogen gas and an injector for injecting the hydrogen gas. First and second acoustic sensors are provided in the anode recirculation line and are spaced a known distance from each other. A controller that is responsive to the output signals from the first and second acoustic sensors determines the concentration of hydrogen gas in the anode recirculation line based on the time between when the controller receives the sensor signal from the first sensor and receives the sensor signal from the second sensor.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: December 10, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel I. Harris, Matthew A. Lang, Daniel C. Di Fiore
  • Patent number: 8507141
    Abstract: A system and method for correcting an estimation of nitrogen in an anode side of a fuel cell stack. The system includes a fuel cell stack and a pressure sensor for measuring pressure in an anode sub-system. The system also includes a controller configured to control the estimation of nitrogen permeation from the cathode side to the anode side of the stack, where the controller determines if the pressure in the anode sub-system equilibrates with atmospheric pressure in a shorter period of time after shutdown compared to the time necessary for the anode sub-system to reach approximately atmospheric pressure after a previous shutdown or calibrated time value, and corrects the estimation of nitrogen in the anode side of the stack if the pressure equilibrates in a shorter period of time.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: August 13, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Matthew A. Lang, Daniel C. Di Fiore, William H. Pettit, Steven R. Falta, John C. Fagley
  • Publication number: 20130149622
    Abstract: A system and method for controlling an injector in a fuel cell system. The method provides a variety of injector pulse widths for at least one predetermined duty cycle and determines an injector close time for each of the variety of injector pulse widths. The method also determines an error for the at least one predetermined duty cycle based on each of the provided injector pulse widths and uses the injector pulse width with the lowest error for the at least one predetermined duty cycle.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 13, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Daniel C. Di Fiore, Matthew A. Lang