Patents by Inventor Daniel C. Merkel

Daniel C. Merkel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190177252
    Abstract: Disclosed are processes for a high temperature isomerization reaction converting (E)-1-chloro-3,3,3-trifluoropropene to (Z)-1-chloro-3,3,3-trifluoropropene. In certain aspects of the invention, such a process includes contacting a feed stream with a heated surface, where the feed stream includes (E)-1-chloro-3,3,3-trifluoropropene or mixture of (E)-1-chloro-3,3,3-trifluoropropene with (Z)-1-chloro-3,3,3-trifluoropropene. The resulting product stream includes (Z)-1-chloro-3,3,3-trifluoropropene and (E)-1-chloro-3,3,3-trifluoropropene, where the ratio of (Z) isomer to (E) isomer in the product stream is higher than the ratio feed stream. The (E) and (Z) isomers in the product stream may be separated from one another.
    Type: Application
    Filed: June 11, 2018
    Publication date: June 13, 2019
    Inventors: Konstantin A. Pokrovski, Daniel C. Merkel, Hsueh S. Tung
  • Publication number: 20190152882
    Abstract: A method for producing 1,3,3,3-tetrafluoropropene (HFO-1234ze, or 1234ze) from 1-chloro-3,3,3-trifluoropopene (HCFO-1233zd, or 1233zd). In one embodiment, HFO-1233zd is subjected to a disproportionation reaction in the presence of a catalyst at an elevated temperature to produce HFO-1234ze as well as 3,3-dichloro-1,1-difluoropropene (HCFO-1232zc). The catalyst may be at least one of a chromium oxyfluoride catalyst, a chromium oxide catalyst, or a metal fluoride catalyst. The reaction may be conducted in the vapor phase at a temperature between 100° C. and 450° C. Advantageously, in the present method, substantially no hydrogen fluoride (HF) is used as a reactant, and substantially no HF is produced as a product.
    Type: Application
    Filed: November 1, 2018
    Publication date: May 23, 2019
    Inventors: Christian Jungong, Daniel C. Merkel, Haiyou Wang
  • Patent number: 10259760
    Abstract: Provided are azeotropic and azeotrope-like compositions of 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) and hydrogen fluoride (HF). Such azeotropic and azeotrope-like compositions are useful as intermediates in the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: April 16, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Hang T. Pham, Daniel C. Merkel, Konstantin A. Pokrovski, Hsueh S. Tung, Rajiv R. Singh
  • Publication number: 20190084906
    Abstract: The present invention relates, in part, to the discovery that, during the fluorination of certain fluoroolefin starting reagents, oligomerization/polymerization of such reagents reduces the conversion process and leads to increased catalyst deactivation. The present invention also illustrates that vaporizing such starting reagents in the presence of one or more organic co-feed reduces such oligomerization/polymerization and improves catalytic stability.
    Type: Application
    Filed: November 20, 2018
    Publication date: March 21, 2019
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Haiyou WANG, Hsueh Sung TUNG, Selma BEKTESEVIC, Daniel C. MERKEL, Haluk KOPKALLI, Yuon CHIU
  • Patent number: 10207972
    Abstract: Provided are azeotropic or azeotrope-like mixtures of 1,3,3,3-tetrachloroprop-1-ene (HCO-1230zd) and hydrogen fluoride. Such compositions are useful as a feed stock in the production of HFC245fa and HCFO1233zd.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: February 19, 2019
    Assignee: Honeywell international Inc.
    Inventors: Daniel C. Merkel, Konstantin A. Pokrovski, Hsueh Sung Tung, Haiyou Wang, Ryan Hulse
  • Publication number: 20190047924
    Abstract: Provided is a process for making 2-chloro-1,1,1,2-tetrafluoropropane. The process has the step of hydrofluorinating 2-chloro-3,3,3-trifluoropropene in the presence of a catalyst selected from the group consisting of SbCl3, SbCl5, SbF5, TiCl4, SnCl4, Cr2O3, and fluorinated Cr2O3.
    Type: Application
    Filed: March 5, 2018
    Publication date: February 14, 2019
    Inventors: Daniel C. Merkel, Robert C. Johnson, Hsueh Sung Tung
  • Publication number: 20190016652
    Abstract: The present disclosure includes various manufacturing and separation processes for the production of (Z)-1-chloro-3,3,3-trifluoropropene from (E)-1-chloro-3,3,3-trifluoropropene. The efficient separation of (Z)-1-chloro-3,3,3-trifluoropropene from unreacted (E)-1-chloro-3,3,3-trifluoropropene may allow for the ability to recycle unreacted starting materials and to maximize raw material utilization and product yields.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 17, 2019
    Inventors: Daniel C. Merkel, Peter Scheidle, Haiyou Wang, Christian Jungong
  • Patent number: 10160703
    Abstract: The invention provides an improved process to manufacture 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) by reacting 2-chloro-3,3,3,-trifluoropropene (HCFO-1233xf) with hydrogen fluoride, in a liquid phase reaction in the presence of hydrogen chloride and a liquid phase fluorination catalyst. The hydrogen chloride is added into the reaction from an external source at a pressure of about 100 psig or more. The HCFC-244bb is an intermediate in the production of 2,3,3,3-tetrafluoropropene-1 (HFO-1234yf).
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: December 25, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Daniel C. Merkel, Stephen A. Cottrell, Robert C. Johnson
  • Patent number: 10155706
    Abstract: The instant invention relates to a process and method for manufacturing 2,3,3,3-tetrafluoropropene by dehydrohalogenating a reactant stream of 2-chloro-1,1,1,2-tetrafluoropropane that is substantially free from impurities, particularly halogenated propanes, propenes, and propynes.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: December 18, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Daniel C. Merkel, Konstantin A. Pokrovski, Hsueh S. Tung, Haiyou Wang
  • Patent number: 10131597
    Abstract: The present invention relates, in part, to the discovery that, during the fluorination of certain fluoroolefin starting reagents, oligomerization/polymerization of such reagents reduces the conversion process and leads to increased catalyst deactivation. The present invention also illustrates that vaporizing such starting reagents in the presence of one or more organic co-feed reduces such oligomerization/polymerization and improves catalytic stability.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: November 20, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Haiyou Wang, Hsueh Sung Tung, Selma Bektesevic, Daniel C. Merkel, Haluk Kopkalli, Yuon Chiu
  • Publication number: 20180327340
    Abstract: A process for the manufacture of halogenated olefins in semi-batch mode by dehydrohalogenation of halogenated alkanes in the presence of an aqueous base such as KOH which simultaneously neutralizes the resulting hydrogen halide. During the process, aqueous base is continuously added to the haloalkane which results in better yields, lower by-product formation and safer/more controllable operation.
    Type: Application
    Filed: February 5, 2018
    Publication date: November 15, 2018
    Inventors: GEORGE R. COOK, HALUK KOPKALLI, STEPHEN A. COTTRELL, YUON CHIU, PETER SCHEIDLE, DANIEL C. MERKEL
  • Patent number: 10125066
    Abstract: A method for producing 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) from a reaction composition including a mixture of HCFC-244bb and 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) by selectively hydrogenating the HCFO-1233xf component of the mixture in a vapor phase in the presence of hydrogen gas and a catalyst to generate a product composition including unreacted HCFC-244bb and hydrogenation products of HCFO-1233xf, such as 2-chloro-1,1,1-trifluoropropane (HCFC-253db), which may be separated from the HCFC-244bb by distillation. The separated HCFC-244bb may then be purified by subsequent acid neutralization and drying steps.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: November 13, 2018
    Assignee: Honeywell International Inc.
    Inventors: Christian Jungong, Daniel C. Merkel
  • Patent number: 10125068
    Abstract: The instant invention relates to a process and method for manufacturing 2,3,3,3-tetrafluoropropene by dehydrohalogenating a reactant stream of 2-chloro-1,1,1,2-tetrafluoropropane that is substantially free from impurities, particularly halogenated propanes, propenes, and propynes.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: November 13, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Daniel C. Merkel, Konstantin A. Pokrovski, Hsueh S. Tung, Haiyou Wang
  • Publication number: 20180318788
    Abstract: Disclosed is a process to separate halogenated organic contaminants such as 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), 2,3,3,3-tetrafluoropropene (HFO-1234yf), trifluoropropyne (TFPY) from hydrochloric acid (HCl) with an adsorbent selected from an activated carbon, an MFI molecular sieve, a carbon molecular sieve, silica, and combinations thereof.
    Type: Application
    Filed: November 4, 2016
    Publication date: November 8, 2018
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Richard Durick HORWATH, Yuon CHIU, Haluk KOPKALLI, Robert A. SMITH, Haiyou WANG, Michael GATTER, Hsueh Sung TUNG, Daniel C. MERKEL
  • Patent number: 10118879
    Abstract: A method for conversion of a composition containing HCFO-1233zd(Z) and HCFC-244fa to form HCFO-1233zd(E) by reacting a mixture including HCFO-1233zd(Z) and HCFC-244fa in a vapor phase in the presence of a catalyst to simultaneously isomerize HCFO-1233zd(Z) to form HCFO-1233zd(E) and dehydrohalogenate HCFC-244fa to form HCFO-1233zd(E). The catalyst may be a chromium-based catalyst such as chromium trifluoride, chromium oxyfluoride, or chromium oxide, for example.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: November 6, 2018
    Assignee: Honeywell International Inc.
    Inventors: Christian Jungong, Daniel C. Merkel
  • Patent number: 10112879
    Abstract: The invention provides an improved process to manufacture 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) by reacting 2-chloro-3,3,3,-trifluoropropene (HCFO-1233x1) with hydrogen fluoride, in a liquid phase reaction in the presence of hydrogen chloride and a liquid phase fluorination catalyst. The hydrogen chloride is added into the reaction from an external source at a pressure of about 100 psig or more. The HCFC-244bb is an intermediate in the production of 2,3,3,3-tetrafluoropropene-1 (HFO-1234yf).
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: October 30, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Daniel C. Merkel, Stephen A. Cottrell, Robert C. Johnson
  • Patent number: 10059647
    Abstract: Disclosed are processes for the production of fluorinated olefins, preferably adapted to commercialization of CF3CF?CH2 (1234yf). Three steps may be used in preferred embodiments in which a feedstock such as CCl2?CClCH2Cl (which may be purchased or synthesized from 1,2,3-trichloropropane) is fluorinated (preferably with HF in gas-phase in the presence of a catalyst) to synthesize a compound such as CF3CCl?CH2, preferably in a 80-96% selectivity. The CF3CCl?CH2 is preferably converted to CF3CFClCH3 (244-isomer) using a SbCl5 as the catalyst which is then transformed selectively to 1234yf, preferably in a gas-phase catalytic reaction using activated carbon as the catalyst. For the first step, a mixture of Cr2O3 and FeCl3/C is preferably used as the catalyst to achieve high selectivity to CF3CCl?CH2 (96%). In the second step, SbCl5/C is preferably used as the selective catalyst for transforming 1233xf to 244-isomer, CF3CFClCH3.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: August 28, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Sudip Mukhopadhyay, Hsueh S. Tung, Michael Van Der Puy, Daniel C. Merkel, Jing Ji Ma, Cheryl L. Bortz, Barbara A. Light, Steven D. Phillips, Rajesh K. Dubey
  • Patent number: 10047026
    Abstract: The present disclosure provides a method for separating 244bb from 1233xf by using solid adsorbent selected from molecular sieves having an average pore size of 5 ? or greater.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: August 14, 2018
    Assignee: HONEYWELL INTERNATIONAL INC
    Inventors: Haiyou Wang, Daniel C. Merkel, Hsueh Sung Tung, Michael Gatter
  • Patent number: 10029964
    Abstract: Azeotropic or azeotrope-like compositions of 3,3,3-trifluoropropyne and water, such as from about 1 to about 50 wt. % water and from about 50 to about 99 wt. % 3,3,3-trifluoropropyne, based on the combined weight of the water and 3,3,3-trifluoropropyne, and methods of producing essentially water free 3,3,3-trifluoropropyne.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: July 24, 2018
    Assignee: Honeywell International Inc.
    Inventors: Haluk Kopkalli, Hang T. Pham, Daniel C. Merkel
  • Patent number: 10011546
    Abstract: Provided are azeotropic or azeotrope-like mixtures of 1,1,3,3-tetrachloroprop-1-ene (HCO-1230za) and hydrogen fluoride. Such compositions are useful as feed stock in the production of HFC-245fa and HCFO-1233zd.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: July 3, 2018
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Hsueh Sung Tung, Konstantin A. Pokrovski, Haiyou Wang, Stephen A. Cottrell, Hang T. Pham