Patents by Inventor Daniel Conley

Daniel Conley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8691264
    Abstract: Implantable or insertable medical devices are provided, which comprises: (a) a biocompatible polymer; and (b) at least one therapeutic agent selected from an anti-inflammatory agent, an analgesic agent, an anesthetic agent, and an antispasmodic agent. The medical devices are adapted for implantation or insertion at a site associated with pain or discomfort upon implantation or insertion. In many embodiments, the therapeutic will be selected from at least one of (i) ketorolac and pharmaceutically acceptable salts thereof (e.g., ketorolac tromethamine) and (ii) 4-diethylamino-2-butynylphenylcyclohexyl glycolate and pharmaceutically acceptable salts thereof (e.g., oxybutynin chloride). Also provided are uses for the implantable or insertable medical devices, which uses comprise reducing pain or discomfort accompanying the implantation or insertion of such devices. Further uses may comprise reducing microbial buildup along the device.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: April 8, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jianmin Li, Danielle Conley, Weenna Bucay-Couto, Cang Duy Dao, Hamid Davoudi, Raymond J. Lareau, Kathleen M Miller
  • Publication number: 20120150096
    Abstract: Implantable or insertable medical devices are provided, which comprises: (a) a biocompatible polymer; and (b) at least one therapeutic agent selected from an anti-inflammatory agent, an analgesic agent, an anesthetic agent, and an antispasmodic agent. The medical devices are adapted for implantation or insertion at a site associated with pain or discomfort upon implantation or insertion. In many embodiments, the therapeutic will be selected from at least one of (i) ketorolac and pharmaceutically acceptable salts thereof (e.g., ketorolac tromethamine) and (ii) 4-diethylamino-2-butynylphenylcyclohexyl glycolate and pharmaceutically acceptable salts thereof (e.g., oxybutynin chloride). Also provided are uses for the implantable or insertable medical devices, which uses comprise reducing pain or discomfort accompanying the implantation or insertion of such devices. Further uses may comprise reducing microbial buildup along the device.
    Type: Application
    Filed: February 24, 2012
    Publication date: June 14, 2012
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Jianmin LI, Danielle Conley, Weenna Bucay-Couto, Cang Duy Dao, Hamid Davoudi, Raymond J. Lareau, Kathleen M Miller
  • Patent number: 8133501
    Abstract: Implantable or insertable medical devices are provided, which comprises: (a) a biocompatible polymer; and (b) at least one therapeutic agent selected from an anti-inflammatory agent, an analgesic agent, an anesthetic agent, and an antispasmodic agent. The medical devices are adapted for implantation or insertion at a site associated with pain or discomfort upon implantation or insertion. In many embodiments, the therapeutic will be selected from at least one of (i) ketorolac and pharmaceutically acceptable salts thereof (e.g., ketorolac tromethamine) and (ii) 4-diethylamino-2-butynylphenylcyclohexyl glycolate and pharmaceutically acceptable salts thereof (e.g., oxybutynin chloride). Also provided are uses for the implantable or insertable medical devices, which uses comprise reducing pain or discomfort accompanying the implantation or insertion of such devices. Further uses may comprise reducing microbial buildup along the device.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: March 13, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jianmin Li, Danielle Conley, Weenna Bucay Couto, Cang Duy Dao, Hamid Davoudi, Raymond Lareau, Kathleen M. Miller
  • Publication number: 20050240175
    Abstract: Devices and methods provide for ablation of cardiac tissue for treating cardiac arrhythmias such as atrial fibrillation. Although the devices and methods are often be used to ablate epicardial tissue in the vicinity of at least one pulmonary vein, various embodiments may be used to ablate other cardiac tissues in other locations on a heart. Devices generally include at least one tissue contacting member for contacting epicardial tissue and securing the ablation device to the epicardial tissue, and at least one ablation member for ablating the tissue. Various embodiments include features, such as suction apertures, which enable the device to attach to the epicardial surface with sufficient strength to allow the tissue to be stabilized via the device. For example, some embodiments may be used to stabilize a beating heart to enable a beating heart ablation procedure. Many of the devices may be introduced into a patient via minimally invasive introducer devices and the like.
    Type: Application
    Filed: June 8, 2005
    Publication date: October 27, 2005
    Applicant: Estech, Inc. (Endoscopic Technologies, Inc.)
    Inventors: Art Bertolero, Tamer Ibrahim, Daniel Conley
  • Publication number: 20030224033
    Abstract: Implantable or insertable medical devices are provided, which comprises: (a) a biocompatible polymer; and (b) at least one therapeutic agent selected from an anti-inflammatory agent, an analgesic agent, an anesthetic agent, and an antispasmodic agent. The medical devices are adapted for implantation or insertion at a site associated with pain or discomfort upon implantation or insertion. In many embodiments, the therapeutic will be selected from at least one of (i) ketorolac and pharmaceutically acceptable salts thereof (e.g., ketorolac tromethamine) and (ii) 4-diethylamino-2-butynylphenylcyclohexyl glycolate and pharmaceutically acceptable salts thereof (e.g., oxybutynin chloride). Also provided are uses for the implantable or insertable medical devices, which uses comprise reducing pain or discomfort accompanying the implantation or insertion of such devices. Further uses may comprise reducing microbial buildup along the device.
    Type: Application
    Filed: February 28, 2003
    Publication date: December 4, 2003
    Inventors: Jianmin Li, Danielle Conley, Weenna Bucay Couto, Cang Duy Dao, Hamid Davoudi, Raymond Lareau, Kathleen M. Miller