Patents by Inventor Daniel David Alexander

Daniel David Alexander has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11190175
    Abstract: An analog front-end circuit for self-calibrating a comparator, the circuit comprising a comparator in a comparator measurement path; a preamplifier coupled to the comparator by a set of switches; and an amplifier coupled to the preamplifier, the preamplifier receiving a reference signal as a first input and a user-definable reference as a second input, the user-definable reference generating a user-definable value chosen to create a known condition at an output of the preamplifier, the preamplifier determines a residual value that represents a measurement error in a signal path comprising the comparator and is used to adjust the user-definable reference value to calibrate the signal path such that threshold boundaries for the comparator can be adjusted to tighten a comparator specification.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: November 30, 2021
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Daniel James Miller, Brian A. Miller, Syed Aftab, Daniel David Alexander, Jason R. Ferguson
  • Patent number: 10911270
    Abstract: Described are systems and methods take advantage of properties of sinc filters that remove frequency components at specific integer multiples of a noise frequency. In various embodiments, sampling of multi-channel systems at sufficiently high rates allows for removal of unwanted signals and harmonics from multi-sample sequences. Advantageously, a multi-sample sequence scheduling scheme eliminates the need for noise filtering one channel at a time at each channel's own sampling rate using a separate filter.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: February 2, 2021
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Daniel David Alexander, Daniel James Miller, Feihua Zhang, Jason R. Ferguson
  • Publication number: 20200112460
    Abstract: Described are systems and methods take advantage of properties of sinc filters that remove frequency components at specific integer multiples of a noise frequency. In various embodiments, sampling of multi-channel systems at sufficiently high rates allows for removal of unwanted signals and harmonics from multi-sample sequences. Advantageously, a multi-sample sequence scheduling scheme eliminates the need for noise filtering one channel at a time at each channel's own sampling rate using a separate filter.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 9, 2020
    Applicant: Maxim Integrated Products, Inc.
    Inventors: Daniel David Alexander, Daniel James Miller, Feihua Zhang, Jason R. Ferguson
  • Publication number: 20190317868
    Abstract: Described herein are systems and methods for real-time fault detection in electrical circuits. Various embodiments provide a fault detection circuit that uses a resistor network that is controlled to detect an internal current leak in multiple directions, e.g., to ground or to a power supply. The magnitude of the leakage current may be estimated from voltage measurements at voltage pins. In addition, as part of circuit diagnostics, open and short circuit fault conditions may be identified by using current sources and measuring deflections at the voltage pins.
    Type: Application
    Filed: April 15, 2019
    Publication date: October 17, 2019
    Applicant: Maxim Integrated Products, Inc.
    Inventors: Daniel James Miller, Brian A. Miller, Daniel J. Black, Daniel David Alexander, Hang Fung Yip, Jiuhui Wang
  • Patent number: 7026975
    Abstract: High speed digital path for successive approximation analog-to-digital converters wherein the successive approximation registers and the switch drivers are combined in set-reset latches having the switch drivers as latch outputs. This reduces the time of each successive approximation by reducing the ripple through time of each stage, thereby increasing the speed of operation of the analog-to-digital converters. As an option, the set-reset latches having the switch drivers as latch outputs may also incorporate level shifting to combine each stage of the successive approximation register, associated switch drivers and level shifters into a single circuit for each stage of the analog-to-digital converter. Various embodiments are disclosed.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: April 11, 2006
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Chad Thomas Steward, Daniel David Alexander, David Maes