Patents by Inventor Daniel Dietze

Daniel Dietze has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11835384
    Abstract: In an embodiment, an optoelectronic measuring device includes a first detector configured to provide a first detector signal, a second detector configured to provide a second detector signal, wherein each of the first detector and the second detector is configured to detect electromagnetic radiation, a signal difference determiner configured to generate a difference signal by subtracting the second detector signal from the first detector signal and a spectral filter arranged in a beam path upstream of the second detector, wherein the spectral filter is configured to filter the electromagnetic radiation before detection by the second detector, wherein the optoelectronic measuring device is configured to measure an intensity of the electromagnetic radiation impinging on the optoelectronic measuring device.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: December 5, 2023
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Daniel Dietze, Wolfgang Zinkl
  • Publication number: 20230113274
    Abstract: In one embodiment, the substrate is configured for a semiconductor laser diode and comprises a plurality of substrate layers. The substrate layers include insulating layers and carrier layers, which are thicker. A plurality of electrical contact surfaces, which are configured for the semiconductor laser diode, a laser capacitor and a control chip, are located on an assembling side of a first, uppermost substrate layer, which is an insulating layer. Electrical conductor tracks, which electrically interconnect the contact surfaces, are located on the one hand between the first insulating layer and a second insulating layer, and on the other hand between the second insulating layer and a third substrate layer, which is preferably an insulating layer.
    Type: Application
    Filed: February 23, 2021
    Publication date: April 13, 2023
    Applicant: ams-OSRAM International GmbH
    Inventors: Daniel Dietze, Dirk Becker
  • Publication number: 20230062921
    Abstract: An integrated semiconductor optoelectronic component for sensing ambient light levels includes a silicon photomultiplier configured to deliver an output signal indicative of the intensity of the light that irradiates the component. The silicon photomultiplier has an active surface area for light detection. The component also includes an optical filter covering the active surface area of the silicon photomultiplier. The optical filter is adapted to selectively transmit light onto the active surface area as a function of wavelength. The optical filter is a scotopic filter and has a spectral transmission curve that mimics the spectral response of the human eye under low-light conditions. The component further includes readout electronics for processing the output signal of the silicon photomultiplier.
    Type: Application
    Filed: February 5, 2021
    Publication date: March 2, 2023
    Inventors: Massimo Cataldo MAZZILLO, Daniel DIETZE
  • Patent number: 11567565
    Abstract: A sensor and a 3-D position detection system are disclosed. In an embodiment a sensor includes at least one sensor chip configured to detect radiation, at least one carrier on which the sensor chip is mounted and a cast body that is transmissive for the radiation and that completely covers the sensor chip, wherein a centroid shift of the sensor chip amounts to at most 0.04 mrad at an angle of incidence of up to at least 60°, wherein the cast body comprises a light inlet side that faces away from the sensor chip, and the light inlet side comprises side walls bounding it on all sides, wherein the side walls are smooth, planar and transmissive for the radiation, wherein a free field-of-view on the light inlet side has an aperture angle of at least 140°, and wherein the cast body protrudes in a direction away from the sensor chip beyond a bond wire.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: January 31, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Daniel Dietze, Maximilian Assig, Claus Jaeger
  • Patent number: 11525730
    Abstract: A sensor including at least one sensor chip for detecting a radiation; and an electronics unit with a digital, bidirectional connection line and with a standby control circuit, as well as with an active status line; wherein the connection line is configured to be connected to an external activation unit; and the standby control circuit is configured to determine whether the connection line is externally addressed by the activation unit when the connection line is not addressed by the active status line, and precisely then to place the sensor in a standby mode.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: December 13, 2022
    Assignee: OSRAM OLED GMBH
    Inventor: Daniel Dietze
  • Publication number: 20220228909
    Abstract: In an embodiment, an optoelectronic measuring device 1ncludes a first detector configured to provide a first detector signal, a second detector configured to provide a second detector signal, wherein each of the first detector and the second detector is configured to detect electromagnetic radiation, a signal difference determiner configured to generate a difference signal by subtracting the second detector signal from the first detector signal and a spectral filter arranged in a beam path upstream of the second detector, wherein the spectral filter is configured to filter the electromagnetic radiation before detection by the second detector, wherein the optoelectronic measuring device is configured to measure an intensity of the electromagnetic radiation impinging on the optoelectronic measuring device.
    Type: Application
    Filed: May 12, 2020
    Publication date: July 21, 2022
    Inventors: Daniel Dietze, Wolfgang Zinkl
  • Patent number: 11371883
    Abstract: A semiconductor light source configured for a spectrometer may include at least one multipixel chip, at least one color setting component disposed optically downstream of at least one of emission region, and a drive unit. The color setting component may be configured for altering a spectral emission behavior of assigned emission regions. The drive unit may be configured to operate a plurality of mutually independently drivable emission regions successively, such that during operation thereof at least three spectrally narrowband individual spectra are emitted successively by the plurality of mutually independently drivable emission regions together with the associated color setting component from which individual spectra a total spectrum emitted by the semiconductor light source is constituted.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: June 28, 2022
    Assignee: OSRAM OLED GmbH
    Inventors: Christopher Koelper, Carola Diez, Tim Boescke, Thomas Kippes, Melanie Sternecker, Daniel Dietze
  • Patent number: 11114574
    Abstract: A semiconductor sensor includes a detector chip that detects green light and an interference filter that optically precedes the detector chip and is permeable to green light and impermeable and reflective to red light and near-infrared radiation. A color filter optically precedes the interference filter. The color filter has a transparency of at least 60% for green light and has an absorbing effect for red light and near-infrared radiation. The semiconductor sensor appears gray or black in the region of the interference filter independently of the angle.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: September 7, 2021
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Daniel Dietze, Tim Boescke, Wolfgang Zinkl
  • Publication number: 20200309597
    Abstract: A semiconductor light source configured for a spectrometer may include at least one multipixel chip, at least one color setting component disposed optically downstream of at least one of emission region, and a drive unit. The color setting component may be configured for altering a spectral emission behavior of assigned emission regions. The drive unit may be configured to operate a plurality of mutually independently drivable emission regions successively, such that during operation thereof at least three spectrally narrowband individual spectra are emitted successively by the plurality of mutually independently drivable emission regions together with the associated color setting component from which individual spectra a total spectrum emitted by the semiconductor light source is constituted.
    Type: Application
    Filed: October 9, 2018
    Publication date: October 1, 2020
    Inventors: Christopher Koelper, Carola Diez, Tim Boescke, Thomas Kippes, Melanie Sternecker, Daniel Dietze
  • Publication number: 20200264041
    Abstract: A sensor including at least one sensor chip for detecting a radiation; and an electronics unit with a digital, bidirectional connection line and with a standby control circuit, as well as with an active status line; wherein the connection line is configured to be connected to an external activation unit; and the standby control circuit is configured to determine whether the connection line is externally addressed by the activation unit when the connection line is not addressed by the active status line, and precisely then to place the sensor in a standby mode.
    Type: Application
    Filed: September 21, 2018
    Publication date: August 20, 2020
    Inventor: Daniel Dietze
  • Publication number: 20200225740
    Abstract: A sensor and a 3-D position detection system are disclosed. In an embodiment a sensor includes at least one sensor chip configured to detect radiation, at least one carrier on which the sensor chip is mounted and a cast body that is transmissive for the radiation and that completely covers the sensor chip, wherein a centroid shift of the sensor chip amounts to at most 0.04 mrad at an angle of incidence of up to at least 60°, wherein the cast body comprises a light inlet side that faces away from the sensor chip, and the light inlet side comprises side walls bounding it on all sides, wherein the side walls are smooth, planar and transmissive for the radiation, wherein a free field-of-view on the light inlet side has an aperture angle of at least 140°, and wherein the cast body protrudes in a direction away from the sensor chip beyond a bond wire.
    Type: Application
    Filed: September 21, 2018
    Publication date: July 16, 2020
    Inventors: Daniel Dietze, Maximilian Assig, Claus Jaeger
  • Publication number: 20200176616
    Abstract: A semiconductor sensor includes a detector chip that detects green light and an interference filter that optically precedes the detector chip and is permeable to green light and impermeable and reflective to red light and near-infrared radiation. A color filter optically precedes the interference filter. The color filter has a transparency of at least 60% for green light and has an absorbing effect for red light and near-infrared radiation. The semiconductor sensor appears gray or black in the region of the interference filter independently of the angle.
    Type: Application
    Filed: June 13, 2018
    Publication date: June 4, 2020
    Inventors: Daniel Dietze, Tim Boescke, Wolfgang Zinkl