Patents by Inventor Daniel Doherty

Daniel Doherty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240367093
    Abstract: A carbon dioxide (CO2) capture system and method for removing CO2 from an inlet gas including a first fluid stream inlet providing for the flow of a first fluid stream, such as an inlet gas containing CO2, and a second fluid stream inlet providing for the flow of a second fluid stream, such as steam, an outlet providing for the flow of a CO2 depleted stream from the CO2 capture system, an outlet providing for the flow of a CO2 stream from the CO2 capture system and a concentrator in fluid communication with the first fluid stream. The system further including a first contactor and a second contactor. Each of the first contactor and the second contactor defining therein a first fluidically-isolated, sorbent-integrated, fluid domain for flow of the first fluid stream and CO2 adsorption and a second fluidically-isolated fluid domain for flow of the second fluid stream to assist in desorption.
    Type: Application
    Filed: July 11, 2024
    Publication date: November 7, 2024
    Applicant: GE Infrastructure Technology LLC
    Inventors: David Roger Moore, Vitali Victor Lissianski, Mark Daniel Doherty, Daniel Jason Erno, Anil Raj Duggal
  • Publication number: 20240359131
    Abstract: A carbon dioxide (CO2) capture system and method for removing CO2 from an inlet gas including a first fluid stream inlet providing for the flow of a first fluid stream, such as an inlet gas containing CO2, and a second fluid stream inlet providing for the flow of a second fluid stream, such as steam, an outlet providing for the flow of a CO2 depleted stream from the CO2 capture system, an outlet providing for the flow of a CO2 stream from the CO2 capture system and a concentrator in fluid communication with the first fluid stream. The system further including a first contactor and a second contactor. Each of the first contactor and the second contactor defining therein a first fluidically-isolated, sorbent-integrated, fluid domain for flow of the first fluid stream and CO2 adsorption and a second fluidically-isolated fluid domain for flow of the second fluid stream to assist in desorption.
    Type: Application
    Filed: July 11, 2024
    Publication date: October 31, 2024
    Applicant: GE Infrastructure Technology LLC
    Inventors: David Roger Moore, Vitali Victor Lissianski, Mark Daniel Doherty, Daniel Jason Erno, Anil Raj Duggal
  • Publication number: 20240303522
    Abstract: Circuits are provided that create entanglement among qubits having Gottesman-Kitaev-Preskill (GKP) encoding using photonic systems and structures. For example, networks of beam splitters and homodyne measurement circuits can be used to perform projective entangling measurements on GKP qubits from different quantum systems. In some embodiments. GKP qubits can be used to implement quantum computations using fusion-based quantum computing or other fault-tolerant quantum computing approaches.
    Type: Application
    Filed: January 25, 2022
    Publication date: September 12, 2024
    Applicant: Psiquantum, Corp.
    Inventors: Andrew Doherty, Mercedes Gimeno-Segovia, Daniel Litinski, Naomi Nickerson, Mihir Pant, Terence Rudolph, Christopher Sparrow
  • Patent number: 12059648
    Abstract: A carbon dioxide (CO2) capture system and method for removing CO2 from an inlet gas including a first fluid stream inlet providing for the flow of a first fluid stream, such as an inlet gas containing CO2, and a second fluid stream inlet providing for the flow of a second fluid stream, such as steam, an outlet providing for the flow of a CO2 depleted stream from the CO2 capture system, an outlet providing for the flow of a CO2 stream from the CO2 capture system and a concentrator in fluid communication with the first fluid stream. The system further including a first contactor and a second contactor. Each of the first contactor and the second contactor defining therein a first fluidically-isolated, sorbent-integrated, fluid domain for flow of the first fluid stream and CO2 adsorption and a second fluidically-isolated fluid domain for flow of the second fluid stream to assist in desorption.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: August 13, 2024
    Assignee: GE INFRASTRUCTURE TECHNOLOGY LLC
    Inventors: David Roger Moore, Vitali Victor Lissianski, Mark Daniel Doherty, Daniel Jason Erno, Anil Raj Duggal
  • Publication number: 20240082815
    Abstract: In some embodiments, the present disclosure relates to a system. The system includes a substrate and a fluid capture material formed on one or more surfaces of the substrate. The fluid capture material includes a sorbent material that binds one or more fluids, the one or more fluids comprising water, carbon dioxide, sulfur oxides, or a combination thereof. The fluid capture material also includes one or more binder materials, wherein the binder material is at least partially cross-linked.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 14, 2024
    Inventors: Michael Joseph O'Brien, David Roger Moore, William Christopher Alberts, Jingjing Yang, Mark Daniel Doherty, Mark D. Buckley, Jack E. Howson, Bryce E. Lipinski
  • Patent number: 11746288
    Abstract: Briefly, in one aspect, the present invention relates to processes for producing a stabilized Mn4+ doped phosphor in solid form and a composition containing such doped phosphor. Such process may include combining a) a solution comprising at least one substance selected from the group consisting of: K2HPO4, an aluminum phosphate, oxalic acid, phosphoric acid, a surfactant, a chelating agent, or a combination thereof, with b) a Mn4+ doped phosphor of formula I in solid form, where formula I may be: Ax [MFy]:Mn4+. The process can further include isolating the stabilized Mn4+ doped phosphor in solid form. In formula I, A may be Li, Na, K, Rb, Cs, or a combination thereof. In formula I, M may be Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof. In formula I, x is the absolute value of the charge of the [MFy] ion and y is 5, 6 or 7.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: September 5, 2023
    Assignee: General Electric Company
    Inventors: Matthew David Butts, James Edward Murphy, Mark Daniel Doherty
  • Publication number: 20220315422
    Abstract: A production system includes a first reaction chamber and a second reaction chamber. The first reaction chamber is configured to receive a first hydrocarbon stream therein through an input port and to form carbon seeds and hydrogen gas therein via hydrocarbon pyrolysis of the first hydrocarbon stream. The second reaction chamber includes a first input port and a second input port. The second reaction chamber is configured to receive the carbon seeds through the first input port and a second hydrocarbon stream through the second input port, and to form carbon product elements and additional hydrogen gas in the second reaction chamber via hydrocarbon pyrolysis of the second hydrocarbon stream. The carbon product elements represent the carbon seeds with additional carbon structure grown on the carbon seeds.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 6, 2022
    Inventors: Richard Louis Hart, David J. Smith, David W. Woodruff, Mark Daniel Doherty
  • Publication number: 20220250002
    Abstract: A carbon dioxide (CO2) capture system and method for removing CO2 from an inlet gas including a first fluid stream inlet providing for the flow of a first fluid stream, such as an inlet gas containing CO2, and a second fluid stream inlet providing for the flow of a second fluid stream, such as steam, an outlet providing for the flow of a CO2 depleted stream from the CO2 capture system, an outlet providing for the flow of a CO2 stream from the CO2 capture system and a concentrator in fluid communication with the first fluid stream. The system further including a first contactor and a second contactor. Each of the first contactor and the second contactor defining therein a first fluidically-isolated, sorbent-integrated, fluid domain for flow of the first fluid stream and CO2 adsorption and a second fluidically-isolated fluid domain for flow of the second fluid stream to assist in desorption.
    Type: Application
    Filed: February 5, 2021
    Publication date: August 11, 2022
    Inventors: David Roger Moore, Vitali Victor Lissianski, Mark Daniel Doherty, Daniel Jason Erno, Anil Raj Duggal
  • Publication number: 20220135876
    Abstract: Briefly, in one aspect, the present invention relates to processes for producing a stabilized Mn4+ doped phosphor in solid form and a composition containing such doped phosphor. Such process may include combining a) a solution comprising at least one substance selected from the group consisting of: K2HPO4, an aluminum phosphate, oxalic acid, phosphoric acid, a surfactant, a chelating agent, or a combination thereof, with b) a Mn4+ doped phosphor of formula I in solid form, where formula I may be: Ax [MFy]:Mn4+. The process can further include isolating the stabilized Mn4+ doped phosphor in solid form. In formula I, A may be Li, Na, K, Rb, Cs, or a combination thereof. In formula I, M may be Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof. In formula I, x is the absolute value of the charge of the [MFy] ion and y is 5, 6 or 7.
    Type: Application
    Filed: January 18, 2022
    Publication date: May 5, 2022
    Applicant: General Electric Company
    Inventors: Matthew David Butts, James Edward Murphy, Mark Daniel Doherty
  • Patent number: 11261375
    Abstract: Briefly, in one aspect, the present invention relates to processes for producing a stabilized Mn4+ doped phosphor in solid form and a composition containing such doped phosphor. Such process may include combining a) a solution comprising at least one substance selected from the group consisting of: K2HPO4, an aluminum phosphate, oxalic acid, phosphoric acid, a surfactant, a chelating agent, or a combination thereof, with b) a Mn4+ doped phosphor of formula I in solid form, where formula I may be: Ax [MFy]:Mn4+. The process can further include isolating the stabilized Mn4+ doped phosphor in solid form. In formula I, A may be Li, Na, K, Rb, Cs, or a combination thereof. In formula I, M may be Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof. In formula I, x is the absolute value of the charge of the [MFy] ion and y is 5, 6 or 7.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: March 1, 2022
    Assignee: General Electric Company
    Inventors: Matthew David Butts, James Edward Murphy, Mark Daniel Doherty
  • Publication number: 20210406394
    Abstract: A blockchain-based travel security system is provided. The system increases travel security. The system includes an electronically stored user's itinerary file with a user's pre-registered travel itinerary. The itinerary file can be stored on a blockchain. The system also includes an electronically stored user's medical history file stored on the blockchain. A single trusted information source provides the itinerary file and the medical history file to the blockchain. The system includes a dual track information storage and retrieval system which is configured to store the itinerary file and to store the recent medical history file. The dual track information storage and retrieval system comprises a first track related to the user's recent medical history file and a second track related to the itinerary file.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 30, 2021
    Inventors: Albena N. Fairchild, Daniel Doherty
  • Publication number: 20210047180
    Abstract: A production system includes a first reaction chamber and a second reaction chamber. The first reaction chamber is configured to receive a first hydrocarbon stream therein through an input port and to form carbon seeds and hydrogen gas therein via hydrocarbon pyrolysis of the first hydrocarbon stream. The second reaction chamber includes a first input port and a second input port. The second reaction chamber is configured to receive the carbon seeds through the first input port and a second hydrocarbon stream through the second input port, and to form carbon product elements and additional hydrogen gas in the second reaction chamber via hydrocarbon pyrolysis of the second hydrocarbon stream. The carbon product elements represent the carbon seeds with additional carbon structure grown on the carbon seeds.
    Type: Application
    Filed: August 14, 2019
    Publication date: February 18, 2021
    Inventors: Richard Louis Hart, David J. Smith, David W. Woodruff, Mark Daniel Doherty
  • Publication number: 20200369956
    Abstract: Briefly, in one aspect, the present invention relates to processes for producing a stabilized Mn4+ doped phosphor in solid form and a composition containing such doped phosphor. Such process may include combining a) a solution comprising at least one substance selected from the group consisting of: K2HPO4, an aluminum phosphate, oxalic acid, phosphoric acid, a surfactant, a chelating agent, or a combination thereof, with b) a Mn4+ doped phosphor of formula I in solid form, where formula I may be: Ax [MFy]:Mn4+. The process can further include isolating the stabilized Mn4+ doped phosphor in solid form. In formula I, A may be Li, Na, K, Rb, Cs, or a combination thereof. In formula I, M may be Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof. In formula I, x is the absolute value of the charge of the [MFy] ion and y is 5, 6 or 7.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 26, 2020
    Applicant: General Electric Company
    Inventors: Matthew David Butts, James Edward Murphy, Mark Daniel Doherty
  • Patent number: 10030483
    Abstract: An efficient and cost-effective process of carbon dioxide recycling in enhanced oil recovery wells or in fracturing wells is provided. The process comprises recovering a hydrocarbon enriched stream of condensed carbon dioxide from and enhanced oil recovery (EOR) well or a fracturing well; adding to said stream one or more thickeners; and directing the thickened stream to the EOR well or fracturing well for recycled usage in EOR.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: July 24, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Dan Hancu, Michael Joseph O'Brien, Robert James Perry, Stanlee Teresa Buddle, Mark Daniel Doherty
  • Patent number: 9957438
    Abstract: A compound represented by the following formula is provided: Also provided is a solution including a compound disclosed herein, a volume of dense carbon dioxide (CO2), and a co-solvent, where the solution has an increased viscosity greater than the viscosity of dense CO2. Methods of increasing the viscosity of dense CO2 and natural gas liquids (NGLs) by, for example, dissolving a compound disclosed herein to form a solution, are also provided.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: May 1, 2018
    Assignee: General Electric Company
    Inventors: Mark Daniel Doherty, Michael Joseph O'Brien, Jason Lee, Robert James Perry, Robert Enick
  • Publication number: 20170321511
    Abstract: An oil well assembly and a method thereof for injecting fluid into an oil reservoir to promote production of oil from the oil reservoir is provided. The oil well assembly comprises a pump for pumping oil from the oil reservoir to the surface and for transporting treatment fluid from the surface to a valve for controlling flow of treatment fluid to the oil reservoir. The pump may be lubricated using the treatment fluid even when the valve has closed the flow of treatment fluid.
    Type: Application
    Filed: November 23, 2015
    Publication date: November 9, 2017
    Inventors: Scott Craig ANDERSON, Benjamin Daniel DOHERTY
  • Publication number: 20170210975
    Abstract: A compound represented by the following formula is provided: Also provided is a solution including a compound disclosed herein, a volume of dense carbon dioxide (CO2), and a co-solvent, where the solution has an increased viscosity greater than the viscosity of dense CO2. Methods of increasing the viscosity of dense CO2 and natural gas liquids (NGLs) by, for example, dissolving a compound disclosed herein to form a solution, are also provided.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 27, 2017
    Applicants: GENERAL ELECTRIC COMPANY, University of Pittsburgh-Of The Commonwealth System of Higher Education
    Inventors: Mark Daniel DOHERTY, Michael Joseph O'BRIEN, Jason LEE, Robert James PERRY, Robert ENICK
  • Publication number: 20170114269
    Abstract: Provided herein are methods for efficient and cost effective carbon dioxide recycling in enhanced oil recovery wells or in fracturing wells. Also provided are functionalized polymers which can be used as thickeners in the methods for efficient and cost effective carbon dioxide recycling in enhanced oil recovery wells or in fracturing wells.
    Type: Application
    Filed: October 26, 2015
    Publication date: April 27, 2017
    Inventors: Dan Hancu, Michael Joseph O'Brien, Robert James Perry, Stanlee Teresa Buddle, Mark Daniel Doherty
  • Patent number: 9580122
    Abstract: Described herein is a walker for moving a structure over the ground. The structure to be moved may be an oil and gas rig for instance. The walker includes a pontoon for engaging the ground, a jack with rollers disposed on the pontoon for lifting the structure and sitting on rollers, a longitudinal drive assembly for longitudinally moving the pontoon relative to the jack with or without the structure on the rollers, and lateral and rotational drive assemblies for moving the jack and the pontoon relative to the structure when the structure sits on the ground.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: February 28, 2017
    Inventor: Benjamin Daniel Doherty
  • Publication number: 20160137115
    Abstract: Described herein is a walker for moving a structure over the ground. The structure to be moved may be an oil and gas rig for instance. The walker includes a pontoon for engaging the ground, a jack with rollers disposed on the pontoon for lifting the structure and sitting on rollers, a longitudinal drive assembly for longitudinally moving the pontoon relative to the jack with or without the structure on the rollers, and lateral and rotational drive assemblies for moving the jack and the pontoon relative to the structure when the structure sits on the ground.
    Type: Application
    Filed: May 11, 2015
    Publication date: May 19, 2016
    Inventor: Benjamin Daniel Doherty