Patents by Inventor Daniel Duane Strong

Daniel Duane Strong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9707658
    Abstract: An edge finishing apparatus includes a surface, a fluid delivery device configured to deliver at least one magnetorheological polishing fluid (MPF) ribbon to the at least one well, at least one magnet placed adjacent to the surface to selectively apply a magnetic field in a vicinity of the surface, and at least one holder placed in opposing relation to the surface, the at least one holder being configured to support at least one article such that an edge of the at least one article can be selectively immersed in the MPF ribbon delivered to the at least one well.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: July 18, 2017
    Assignee: Corning Incorporated
    Inventors: Charles Michael Darcangelo, Steven Edward DeMartino, Aric Bruce Shorey, Daniel Duane Strong, David Alan Tammaro, Butchi Reddy Vaddi
  • Publication number: 20150306726
    Abstract: An edge finishing apparatus includes a surface, a fluid delivery device configured to deliver at least one magnetorheological polishing fluid (MPF) ribbon to the at least one well, at least one magnet placed adjacent to the surface to selectively apply a magnetic field in a vicinity of the surface, and at least one holder placed in opposing relation to the surface, the at least one holder being configured to support at least one article such that an edge of the at least one article can be selectively immersed in the MPF ribbon delivered to the at least one well.
    Type: Application
    Filed: July 7, 2015
    Publication date: October 29, 2015
    Inventors: Charles Michael Darcangelo, Steven Edward DeMartino, Aric Bruce Shorey, Daniel Duane Strong, David Alan Tammaro, Butchi Reddy Vaddi
  • Patent number: 9102030
    Abstract: An edge finishing apparatus includes a surface, a fluid delivery device configured to deliver at least one magnetorheological polishing fluid (MPF) ribbon to the at least one well, at least one magnet placed adjacent to the surface to selectively apply a magnetic field in a vicinity of the surface, and at least one holder placed in opposing relation to the surface, the at least one holder being configured to support at least one article such that an edge of the at least one article can be selectively immersed in the MPF ribbon delivered to the at least one well.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: August 11, 2015
    Assignee: Corning Incorporated
    Inventors: Charles Michael Darcangelo, Steven Edward DeMartino, Aric Bruce Shorey, Daniel Duane Strong, David Alan Tammaro, Butchi Reddy Vaddi
  • Publication number: 20150190898
    Abstract: Methods of finishing an edge of a glass sheet comprise the step of machining the edge of the glass sheet into a predetermined cross-sectional profile along a plane taken transverse to the edge of the glass sheet with an initial average edge strength ESi. The methods also include the step of finishing the edge with at least one finishing member, such as an endless belt, without substantially changing a shape of the predetermined cross-sectional profile. In one example, a wet slurry including an abrasive can be applied to at least one of a finishing member and the edge of the glass sheet. After finishing the edge, example finished average edge strengths ESf can be at least about 250 MPa. In addition or alternatively, in another example, the ratio ESf/ESi can be within a range of from about 1.6 to about 5.6.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 9, 2015
    Inventors: Charles Michael Darcangelo, Aric Bruce Shorey, Daniel Duane Strong, David Alan Tammaro
  • Patent number: 8607590
    Abstract: Methods for separating glass articles from strengthened glass substrate sheets and strengthened glass substrate sheets are provided. In one embodiment, a method includes forming at least one groove on at least one surface of the glass substrate sheet and strengthening the glass substrate sheet by a strengthening process. The groove defines the glass article and partially extends through a thickness of the glass substrate sheet. The method further includes generating an initiation defect on the groove at an initiation location to cause a through crack to self-propagate through the glass substrate sheet along the groove, thereby separating the glass article from the glass substrate sheet. In another embodiment, a strengthened glass substrate sheet includes a strengthened glass having a glass article groove and an initiation groove on a surface, the glass article groove defining a glass article.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: December 17, 2013
    Assignee: Corning Incorporated
    Inventors: Gregory Scott Glaesemann, Xinghua Li, Daniel Duane Strong
  • Publication number: 20130225049
    Abstract: Methods of finishing a sheet of material, such as a glass sheet, include finishing an edge portion of the sheet of material with magnetorheological finishing. In one example, the average thickness of the sheet of material between a first face and a second face is from 50 ?m to about 500 ?m. In another example, the method consists essentially of a single step of finishing the edge portion of the glass sheet with magnetorheological finishing such that the entire edge portion is shaped between the first face and the second face during the a single magnetorheological finishing step.
    Type: Application
    Filed: December 20, 2012
    Publication date: August 29, 2013
    Inventors: Aric Bruce Shorey, Daniel Duane Strong
  • Publication number: 20130133366
    Abstract: A method of improving strength of a chemically-strengthened glass article comprises exposing a target surface of the glass article to an ion-exchange strengthening process, the ion-exchange strengthening process generating a chemically-induced compressive layer in the glass article. Thereafter, dynamic interfacing of the target surface of the glass article with a sheared magnetorheological fluid is performed to remove at least a portion of the chemically-induced compressive layer from the glass article, wherein the parameters of the dynamic interfacing of the glass article with the sheared magnetorheological fluid are such that a thickness of the removed portion of the chemically-induced compressive layer is less than approximately 20% of the chemically-induced compressive layer.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 30, 2013
    Inventors: Gregory Scott Glaesemann, Aric Bruce Shorey, Daniel Duane Strong, David Alan Tammaro
  • Publication number: 20120135195
    Abstract: Methods for separating glass articles from strengthened glass substrate sheets and strengthened glass substrate sheets are provided. In one embodiment, a method includes forming at least one groove on at least one surface of the glass substrate sheet and strengthening the glass substrate sheet by a strengthening process. The groove defines the glass article and partially extends through a thickness of the glass substrate sheet. The method further includes generating an initiation defect on the groove at an initiation location to cause a through crack to self-propagate through the glass substrate sheet along the groove, thereby separating the glass article from the glass substrate sheet. In another embodiment, a strengthened glass substrate sheet includes a strengthened glass having a glass article groove and an initiation groove on a surface, the glass article groove defining a glass article.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 31, 2012
    Inventors: Gregory Scott Glaesemann, Xinghua Li, Daniel Duane Strong
  • Publication number: 20120009854
    Abstract: An edge finishing apparatus includes a surface, a fluid delivery device configured to deliver at least one magnetorheological polishing fluid (MPF) ribbon to the at least one well, at least one magnet placed adjacent to the surface to selectively apply a magnetic field in a vicinity of the surface, and at least one holder placed in opposing relation to the surface, the at least one holder being configured to support at least one article such that an edge of the at least one article can be selectively immersed in the MPF ribbon delivered to the at least one well.
    Type: Application
    Filed: June 27, 2011
    Publication date: January 12, 2012
    Inventors: Charles Michael Darcangelo, Steven Edward DeMartino, Aric Bruce Shorey, Daniel Duane Strong, David Alan Tammaro, Butchi Reddy Vaddi