Patents by Inventor Daniel DUNKER

Daniel DUNKER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11851366
    Abstract: The invention relates to a process for connecting glass substrates which allows glass substrates to be aligned in a site-specific manner and to subsequently be connected to one another, and to the site-specifically aligned and interconnected glass substrates. Generally, the process relates to connecting glass substrates to one another, optionally also without site-specific alignment. The interconnected glass substrates obtainable by processes according to the invention are characterized by a firm bond with one another, which is preferably formed by solidified glass solder that is in form-fitting engagement with the glass substrates. Therein, recesses, which are preformed in the glass substrate, with glass solder are used for aligning and optionally for connecting the glass substrates.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: December 26, 2023
    Assignee: LPKF LASER & ELECTRONICS AG
    Inventors: Robin Krüger, Roman Ostholt, Norbert Ambrosius, Oktavia Ostermann, Bernd Rösener, Daniel Dunker, Arne Schnoor, Malte Schulz-Ruhtenberg
  • Publication number: 20230405726
    Abstract: A substrate carrier made of glass for processing a transparent or transmissive substrate by electromagnetic radiation includes a first upper side serving as a substrate support and a lower side facing away from the upper side. The substrate support and/or the lower side of the substrate carrier has a structuring produced by modifications in the substrate carrier and a material removal by action of an etching medium in respective regions of the modifications in the substrate carrier. The structuring has a plurality of adjacent and/or merging conical recesses. At least one of the conical recesses is configured as a through-hole of the substrate carrier between the substrate support and the lower side, and a plurality of other ones of the conical recesses are configured as depressions.
    Type: Application
    Filed: June 20, 2023
    Publication date: December 21, 2023
    Inventors: Daniel Dunker, Moritz Doerge, Roman Ostholt, Norbert Ambrosius
  • Publication number: 20230278917
    Abstract: A substrate made of glass includes an essentially dimensionally stable portion, one or more flexible portions, and one or more recesses on one side or which do not penetrate the substrate, and which is/are disposed in an outer surface of the substrate, so as to reduce a material thickness of the substrate in the flexible portion relative to an adjacent portion. The recess is formed in each case by a plurality of concave depressions that are defined by microstructures, a course of which determines a remaining material thickness of the substrate in the flexible portion. The depressions extend at least in portions into an area having a thickness parallel to the outer surface which on bending the substrate encloses a plane of a neutral axis between an extension zone and a compression zone of the substrate.
    Type: Application
    Filed: May 20, 2021
    Publication date: September 7, 2023
    Inventors: Roman Ostholt, Norbert Ambrosius, Daniel Dunker, Aaron Michael Vogt, Sergej Schneider
  • Publication number: 20230192535
    Abstract: A method for introducing a recess into a substrate, and/or for reducing a material, includes spatially beam shaping a focus of a laser beam along a beam axis, whereby defects are produced in the substrate along the beam axis without there being any material removal. One or more of the defects forms a modification in the substrate, so that subsequently the recess and/or the material thickness reduction is produced by action of an etching medium by an anisotropic material removal. An additional modification is introduced into the substrate along an additional beam axis that is parallel to and spaced from the beam axis, the additional modification having an extent between a first outer surface of the substrate and a position within the substrate that is at a distance from a second, opposite outer surface of the substrate.
    Type: Application
    Filed: March 31, 2021
    Publication date: June 22, 2023
    Inventors: Norbert Ambrosius, Roman Ostholt, Daniel Dunker, Moritz Doerge, Kevin Hale, Aaron Michael Vogt
  • Patent number: 11478880
    Abstract: A method for creating at least one recess, in particular an aperture, in a transparent or transmissive material, includes: selectively modifying the material along a beam axis by electromagnetic radiation; and creating the at least one recess by one or more etching steps, using different etching rates in a modified region and in non-modified regions. The electromagnetic radiation produces modifications having different characteristics in the material along the beam axis such that the etching process in the material is heterogeneous and the etching rates differ from one another in regions modified with different characteristics under unchanged etching conditions.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: October 25, 2022
    Assignee: LPKF LASER & ELECTRONICS AG
    Inventors: Roman Ostholt, Norbert Ambrosius, Arne Schnoor, Daniel Dunker
  • Publication number: 20220223806
    Abstract: A method for producing a display comprising a carrier substrate made of glass, the display having flexible, bendable and/or elastic properties in a predetermined region of the carrier substrate, includes introducing modifications into the carrier substrate within the region by laser radiation along a closed and/or linear contour and/or points. Within the region, a one flexible, bendable and/or elastic layer is applied. A side of the carrier substrate facing away from the layer is subjected to an etching attack, by which material removal from the carrier substrate takes place along the modifications along the contour and/or at the points of the region until recesses are produced that extend across or over a substantial part of a material thickness of the carrier substrate.
    Type: Application
    Filed: April 27, 2020
    Publication date: July 14, 2022
    Inventors: Roman Ostholt, Daniel Dunker, Sergej Schneider
  • Publication number: 20220089482
    Abstract: The invention relates to a process for connecting glass substrates which allows glass substrates to be aligned in a site-specific manner and to subsequently be connected to one another, and to the site-specifically aligned and interconnected glass substrates. Generally, the process relates to connecting glass substrates to one another, optionally also without site-specific alignment. The interconnected glass substrates obtainable by processes according to the invention are characterized by a firm bond with one another, which is preferably formed by solidified glass solder that is in form-fitting engagement with the glass substrates. Therein, recesses, which are preformed in the glass substrate, with glass solder are used for aligning and optionally for connecting the glass substrates.
    Type: Application
    Filed: January 29, 2020
    Publication date: March 24, 2022
    Inventors: Robin Krüger, Roman Ostholt, Norbert Ambrosius, Oktavia Ostermann, Bernd Rösener, Daniel Dunker, Arne Schnoor, Malte Schulz-Ruhtenberg
  • Patent number: 11156774
    Abstract: An optical component, in particular a passive component, for optical waveguiding, includes: optical waveguides formed in a carrier substrate as a waveguide pattern. The optical waveguides are formed in the carrier substrate by recesses by cutting out the optical waveguide. In an embodiment, the optical waveguide is connected to the carrier substrate by web-shaped supporting structures.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: October 26, 2021
    Assignee: LPKF LASER & ELECTRONICS AG
    Inventors: Norbert Ambrosius, Roman Ostholt, Daniel Dunker, Malte Schulz-Ruhtenberg, Arne Schnoor, Tobias Jaus
  • Patent number: 11072041
    Abstract: A method for producing a technical mask includes: providing a technical mask including at least one plate-shaped substrate, the plate-shaped substrate being transparent to at least one laser wavelength; and producing at least one opening in the mask by laser-induced deep etching. In an embodiment, an etching attack takes place at least temporarily on one side during laser-induced deep etching.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: July 27, 2021
    Assignee: LPKF LASER & ELECTRONICS AG
    Inventors: Roman Ostholt, Norbert Ambrosius, Arne Schnoor, Daniel Dunker, Kevin Hale, Moritz Doerge, Stephan Wenke
  • Patent number: 11065716
    Abstract: A method for machining, in particular for cutting an, in particular, planar substrate by laser-induced deep etching includes: moving laser radiation along a machining line; directing individual pulses onto the planar substrate at a spatial laser pulse distance (d); and subsequently removing an anisotropic material by etching at an etching rate (r) and an etching duration (t). Machining parameters are set according to a condition: 1>d/(R*t)>10?5.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: July 20, 2021
    Assignee: LPKF LASER & ELECTRONICS AG
    Inventors: Roman Ostholt, Norbert Ambrosius, Daniel Dunker, Arne Schnoor
  • Publication number: 20200301068
    Abstract: An optical component, in particular a passive component, for optical waveguiding, includes: optical waveguides formed in a carrier substrate as a waveguide pattern. The optical waveguides are formed in the carrier substrate by recesses by cutting out the optical waveguide. In an embodiment, the optical waveguide is connected to the carrier substrate by web-shaped supporting structures.
    Type: Application
    Filed: August 29, 2018
    Publication date: September 24, 2020
    Inventors: Norbert Ambrosius, Roman Ostholt, Daniel Dunker, Malte Schulz-Ruhtenberg, Arne Schnoor, Tobias Jaus
  • Publication number: 20200180068
    Abstract: A method for machining, in particular for cutting an, in particular, planar substrate by laser-induced deep etching includes: moving laser radiation along a machining line; directing individual pulses onto the planar substrate at a spatial laser pulse distance (d); and subsequently removing an anisotropic material by etching at an etching rate (r) and an etching duration (t). Machining parameters are set according to a condition: 1>d/(R*t)>10?5.
    Type: Application
    Filed: April 6, 2018
    Publication date: June 11, 2020
    Inventors: Roman Ostholt, Norbert Ambrosius, Daniel Dunker, Arne Schnoor
  • Patent number: 10645814
    Abstract: A method for creating patterned coatings on a molded article includes providing a molded article which has a surface comprising a first area and a second area, at least one surface property in the first area of the surface being different from that in the second area, applying a coating covering at least the first area and the second area to the surface of the molded article, the adhesion of said coating being greater in the first area than in the second area because of the at least one different surface property, and partially removing the coating by means of a removal process which is applied to the entire coating at a constant removal power that is determined such that the entire coating is removed in the second area while the coating remains in place on an entire surface of the first area.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: May 5, 2020
    Assignees: PLASMA INNOVATIONS GMBH, LPKF LASER & ELECTRONICS AG
    Inventors: Michael Bisges, Roman Ostholt, Bernd Rösener, Daniel Dunker
  • Publication number: 20200016696
    Abstract: A method for producing a technical mask includes: providing a technical mask including at least one plate-shaped substrate, the plate-shaped substrate being transparent to at least one laser wavelength; and producing at least one opening in the mask by laser-induced deep etching. In an embodiment, an etching attack takes place at least temporarily on one side during laser-induced deep etching.
    Type: Application
    Filed: March 5, 2018
    Publication date: January 16, 2020
    Inventors: Roman OSTHOLT, Norbert Ambrosius, Arne Schnoor, Daniel Dunker, Kevin Hale, Moritz Doerge, Stephan Wenke
  • Publication number: 20200009691
    Abstract: A method for creating at least one recess, in particular an aperture, in a transparent or transmissive material, includes: selectively modifying the material along a beam axis by electromagnetic radiation; and creating the at least one recess by one or more etching steps, using different etching rates in a modified region and in non-modified regions. The electromagnetic radiation produces modifications having different characteristics in the material along the beam axis such that the etching process in the material is heterogeneous and the etching rates differ from one another in regions modified with different characteristics under unchanged etching conditions.
    Type: Application
    Filed: March 5, 2018
    Publication date: January 9, 2020
    Inventors: Roman OSTHOLT, Norbert AMBROSIUS, Arne SCHNOOR, Daniel DUNKER
  • Publication number: 20180332711
    Abstract: A method for creating patterned coatings on a molded article includes providing a molded article which has a surface comprising a first area and a second area, at least one surface property in the first area of the surface being different from that in the second area, applying a coating covering at least the first area and the second area to the surface of the molded article, the adhesion of said coating being greater in the first area than in the second area because of the at least one different surface property, and partially removing the coating by means of a removal process which is applied to the entire coating at a constant removal power that is determined such that the entire coating is removed in the second area while the coating remains in place on an entire surface of the first area.
    Type: Application
    Filed: September 30, 2016
    Publication date: November 15, 2018
    Inventors: Michael BISGES, Roman OSTHOLT, Bernd RÖSENER, Daniel DUNKER