Patents by Inventor Daniel E. Lawrynowicz
Daniel E. Lawrynowicz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240382313Abstract: An orthopedic prosthetic joint comprising a joint couple having a first bearing surface made of a poly aryl ether ketone (PAEK) and a second joint component having a second bearing made of a polymer that is softer than the PAEK such as UHMWPE the first and second bearing surfaces in sliding engagement with one another.Type: ApplicationFiled: August 1, 2024Publication date: November 21, 2024Applicant: Howmedica Osteonics Corp.Inventors: Aiguo Wang, Zongtao Zhang, Daniel E. Lawrynowicz, Shi-Shen Yau
-
Patent number: 12076246Abstract: An orthopedic prosthetic joint comprising a joint couple having a first bearing surface made of a poly aryl ether ketone (PAEK) and a second joint component having a second bearing made of a polymer that is softer than the PAEK such as UHMWPE the first and second bearing surfaces in sliding engagement with one another.Type: GrantFiled: January 25, 2018Date of Patent: September 3, 2024Assignee: Howmedica Osteonics Corp.Inventors: Aiguo Wang, Zongtao Zhang, Daniel E. Lawrynowicz, Shi-Shen Yau
-
Publication number: 20180147063Abstract: An orthopedic prosthetic joint comprising a joint couple having a first bearing surface made of a poly aryl ether ketone (PAEK) and a second joint component having a second bearing made of a polymer that is softer than the PAEK such as UHMWPE the first and second bearing surfaces in sliding engagement with one another.Type: ApplicationFiled: January 25, 2018Publication date: May 31, 2018Inventors: Aiguo Wang, Zongtao Zhang, Daniel E. Lawrynowicz, Shi-Shen Yau
-
Patent number: 9907660Abstract: An orthopedic prosthetic joint comprising a joint couple having a first bearing surface made of a poly aryl ether ketone (PAEK) and a second joint component having a second bearing made of a polymer that is softer than the PAEK such as UHMWPE the first and second bearing surfaces in sliding engagement with one another.Type: GrantFiled: June 3, 2010Date of Patent: March 6, 2018Assignee: Howmedica Osteonics Corp.Inventors: Aiguo Wang, Zongtao Zhang, Daniel E. Lawrynowicz, Shi-Shen Yau
-
Patent number: 9776246Abstract: A method of fabricating a material having a high concentration of a carbide constituent. The method may comprise adding a carbide source to a biocompatible material in which a weight of the carbide source is at least approximately 10% of the total weight, heating the carbide source and the biocompatible material to a predetermined temperature to melt the biocompatible material and allow the carbide source to go into solution to form a molten homogeneous solution, and impinging the molten homogeneous solution with a high pressure fluid to form spray atomized powder having carbide particles. The size of a particle of carbide in the atomized powder may be approximately 900 nanometers or less. The biocompatible material may be cobalt chrome, the carbide source may be graphite, and the fluid may be a gas or a liquid.Type: GrantFiled: November 25, 2014Date of Patent: October 3, 2017Assignee: Howmedica Osteonics Corp.Inventors: Daniel E. Lawrynowicz, Aiguo Wang, Zongtao Zhang, Haitong Zeng
-
Patent number: 9763791Abstract: A prosthetic head for a femoral component has a metal shell with a tapered cavity. The shell has a part-spherical outer surface defining an inner portion terminating in an open end. A polymeric material completely fills the inner portion of the hollow shell extending from an inner surface of the shell to the open end. The polymeric material includes a conically tapered socket centered about the polar axis intermediate ends of the open end wherein the shell is a hollow titanium shell having an inner surface with a porous structure for receiving a portion of the polymeric material. The hollow titanium shell inner surface has at least one rib extending inwardly toward the conically tapered socket.Type: GrantFiled: February 6, 2013Date of Patent: September 19, 2017Assignee: Howmedica Osteonics Corp.Inventors: Daniel E. Lawrynowicz, Haitong Zeng, Zongtao Zhang, Aiguo Wang, Keenan Michael Hanson
-
Patent number: 9370605Abstract: A method for coating an orthopedic implant made of a titanium or titanium alloy substrate with a cobalt-chrome molybdenum alloy uses multi-arc physical vapor deposition (MA-PVD). The substrate has a first bearing surface coated with a coating made of the deposited cobalt-chromium molybdenum alloy. The bearing surface slidably receives a second bearing surface of the prosthetic joint component. The MA-PVD cobalt-chromium molybdenum alloy coating forming the first bearing surface is made up of hexagonal close packed (HCP) grains having a columnar structure with a length of about 1 ?m and a width of about 0.1 ?m with the length of each HCP grains being oriented generally perpendicular to the titanium substrate bearing surface.Type: GrantFiled: March 4, 2013Date of Patent: June 21, 2016Assignee: Howmedica Osteonics Corp.Inventors: Zongtao Zhang, Keenan Michael Hanson, Thomas Francis McCarthy, Daniel E. Lawrynowicz, Aiguo Wang
-
Patent number: 9193033Abstract: A method for improving the bond between a PEEK joint component and bone cement comprising roughening a surface of the PEEK component by air-blasting abrasive water-soluble particles against the component until an average surface roughness of 4 to 6 micrometers is attained and subsequently submerging the component in water to dissolve any residual particles.Type: GrantFiled: March 11, 2013Date of Patent: November 24, 2015Assignee: Howmedica Osteonics Corp.Inventors: Zongtao Zhang, Keenan Michael Hanson, Daniel E. Lawrynowicz
-
Publication number: 20150266210Abstract: A method for making an ultra-high weight polyethylene (UHMWPE) medical implant starts with obtaining a preform consolidated from UHMWPE resin. Thereafter the preform is hot isostaticly pressed at a temperature between 150° C. and 190° C. at a pressure up to 30,000 psi. After the hot isostatic pressing the preform is sequentially irradiated in a solid state at a total radiation dose of 2 to 10 MRad. The irradiated UHMWPE preform is then heated to a temperature of about 110° C. to about 190° C. for between 2 to 10 hours. The irradiated and heated preform is then cooled after each irradiation and heating to at or below 50° C., and thereafter a medical implant is formed from the preform. Alternately, the process can be performed on the medical implant itself.Type: ApplicationFiled: March 21, 2014Publication date: September 24, 2015Applicant: HOWMEDICA OSTEONICS CORP.Inventors: Lin Song, Daniel E. Lawrynowicz, Kim-phuong Nguyen Le, Kevor Shane Tenhuisen
-
Publication number: 20150068362Abstract: A method of fabricating a material having a high concentration of a carbide constituent. The method may comprise adding a carbide source to a biocompatible material in which a weight of the carbide source is at least approximately 10% of the total weight, heating the carbide source and the biocompatible material to a predetermined temperature to melt the biocompatible material and allow the carbide source to go into solution to form a molten homogeneous solution, and impinging the molten homogeneous solution with a high pressure fluid to form spray atomized powder having carbide particles. The size of a particle of carbide in the atomized powder may be approximately 900 nanometers or less. The biocompatible material may be cobalt chrome, the carbide source may be graphite, and the fluid may be a gas or a liquid.Type: ApplicationFiled: November 25, 2014Publication date: March 12, 2015Inventors: Daniel E. Lawrynowicz, Aiguo Wang, Zongtao Zhang, Haitong Zeng
-
Patent number: 8920534Abstract: A method of fabricating a material having a high concentration of a carbide constituent. The method may comprise adding a carbide source to a biocompatible material in which a weight of the carbide source is at least approximately 10% of the total weight, heating the carbide source and the biocompatible material to a predetermined temperature to melt the biocompatible material and allow the carbide source to go into solution to form a molten homogeneous solution, and impinging the molten homogeneous solution with a high pressure fluid to form spray atomized powder having carbide particles. The size of a particle of carbide in the atomized powder may be approximately 900 nanometers or less. The biocompatible material may be cobalt chrome, the carbide source may be graphite, and the fluid may be a gas or a liquid.Type: GrantFiled: March 26, 2007Date of Patent: December 30, 2014Assignee: Howmedica Osteonics Corp.Inventors: Daniel E. Lawrynowicz, Aiguo Wang, Zongtao Zhang, Haitong Zeng
-
Publication number: 20140256229Abstract: A method for improving the bond between a PEEK joint component and bone cement comprising roughening a surface of the PEEK component by air-blasting abrasive water-soluble particles against the component until an average surface roughness of 4 to 6 micrometers is attained and subsequently submerging the component in water to dissolve any residual particles.Type: ApplicationFiled: March 11, 2013Publication date: September 11, 2014Applicant: HOWMEDICA OSTEONICS CORP.Inventors: Zongtao Zhang, Keenan Michael Hanson, Daniel E. Lawrynowicz
-
Publication number: 20140249642Abstract: An orthopedic implant has a prosthetic joint component made, for example, of polyethylene and another component made of a titanium or titanium alloy substrate. The substrate has a first bearing surface coated with a coating made of a cobalt-chromium molybdenum alloy. The bearing surface slidably receives a second bearing surface of the prosthetic joint component. The cobalt-chromium molybdenum alloy coating forming the first bearing surface is made up of hexagonal close packed (HCP) grains having a columnar structure with a length of about 1 ?m and a width of about 0.1 ?m with the length of each HCP grains being oriented generally perpendicular to the titanium substrate bearing surface.Type: ApplicationFiled: March 4, 2013Publication date: September 4, 2014Applicant: HOWMEDICA OSTEONICS CORP.Inventors: Zongtao Zhang, Keenan Michael Hanson, Thomas Francis McCarthy, Daniel E. Lawrynowicz, Aiguo Wang
-
Publication number: 20140222158Abstract: A prosthetic head for a femoral component has a metal shell with a tapered cavity. The shell has a part-spherical outer surface defining an inner portion terminating in an open end. A polymeric material completely fills the inner portion of the hollow shell extending from an inner surface of the shell to the open end. The polymeric material includes a conically tapered socket centered about the polar axis intermediate ends of the open end wherein the shell is a hollow titanium shell having an inner surface with a porous structure for receiving a portion of the polymeric material. The hollow titanium shell inner surface has at least one rib extending inwardly toward the conically tapered socket.Type: ApplicationFiled: February 6, 2013Publication date: August 7, 2014Applicant: HOWMEDICA OSTEONICS CORP.Inventors: Daniel E. Lawrynowicz, Haitong Zeng, Zongtao Zhang, Aiguo Wang, Keenan Michael Hanson
-
Patent number: 8727203Abstract: A method of manufacturing an orthopaedic implant device having a porous outer surface is described. In one embodiment, the implant device includes a porous layer, an intermediate layer, and a solid substrate. The porous layer is preferably bonded to the intermediate layer by cold isostatic pressing. The intermediate layer is preferably bonded by vacuum welding to the solid substrate such that the porous layer forms at least a portion of the outer surface of the orthopaedic implant device. Preferably, a diffusion bond is created between the bonded intermediate layer and the solid substrate by hot isostatic pressing. In another embodiment, a porous layer is created on an outer surface of a solid layer by selective melting. Preferably, the solid layer is bonded to the solid substrate such that the porous layer forms at least a portion of the outer surface of the orthopaedic implant device.Type: GrantFiled: September 16, 2010Date of Patent: May 20, 2014Assignee: Howmedica Osteonics Corp.Inventors: Aiguo Wang, Daniel E. Lawrynowicz, Haitong Zeng, Naomi Murray, Balaji Prabhu
-
Patent number: 8439975Abstract: A method for manufacturing of ultrahigh molecular weight polyethylene (UHMWPE) for implants, where the implants have been machined out of UHMWPE blocks or extruded rods, has anthocyanin dispersely imbedded in the polyethylene. The implant is then exposed to ? ray or electron beam irradiation in an amount of at least 2.5 Mrad followed by a heat treatment to prevent the implant from becoming brittle in the long term as well as to improve strength and wear. The method includes mixing a powder or granulate resin of UHMWPE with an aqueous liquid that contains anthocyanin in a predetermined amount. The water is then evaporated to deposit the anthocyanin in a predetermined concentration on the polyethylene particles. The doped UHMWPE particles are compressed into blocks at temperatures in a range of approximately 135° C.-250° C. and pressures in a range of approximately 2-70 MPa. Medical implants are made from the blocks.Type: GrantFiled: September 20, 2012Date of Patent: May 14, 2013Assignee: Howmedica Osteonics Corp.Inventors: Shulin He, Shi-Shen Yau, Aiguo Wang, Daniel E. Lawrynowicz
-
Patent number: 8350186Abstract: A method of producing an orthopedic implant including the steps of building a flat open model of at least a portion of an implant. The flat open model may be built using a selective laser sinter process. The flat open model preferably includes at least one groove along either a first surface or a second surface of the model. Next a force may be applied to the flat open model at predetermined locations to thereby cause the model to bend and assume a shape similar to a desired result. The now bent model may be resurfaced by either applying additional material such that the bent flat open model assumes the shape of a desired implant or the bent open model may be snap fit to an additional element.Type: GrantFiled: December 29, 2006Date of Patent: January 8, 2013Assignee: Howmedica Osteonics Corp.Inventors: Eric Jones, Christopher J. Sutcliffe, Aiguo Wang, Daniel E. Lawrynowicz
-
Patent number: 8303657Abstract: A method for manufacturing of ultrahigh molecular weight polyethylene (UHMWPE) for implants, where the implants have been machined out of UHMWPE blocks or extruded rods, has anthocyanin dispersely imbedded in the polyethylene. The implant is then exposed to ? ray or electron beam irradiation in an amount of at least 2.5 Mrad followed by a heat treatment to prevent the implant from becoming brittle in the long term as well as to improve strength and wear. The method includes mixing a powder or granulate resin of UHMWPE with an aqueous liquid that contains anthocyanin in a predetermined amount. The water is then evaporated in order to deposit the anthocyanin in a predetermined concentration on the polyethylene particles. The doped UHMWPE particles are compressed into blocks at temperatures in a range of approximately 135° C.-250° C. and pressures in a range of approximately 2-70 MPa. Medical implants are made from the blocks.Type: GrantFiled: May 25, 2011Date of Patent: November 6, 2012Assignee: Howmedica Osteonics Corp.Inventors: Shulin He, Shi-Shen Yau, Aiguo Wang, Daniel E. Lawrynowicz
-
Patent number: 8241564Abstract: A method for manufacturing of ultrahigh molecular weight polyethylene (UHMWPE) for implants, where the implants have been machined out of UHMWPE blocks or extruded rods, has anthocyanin dispersely imbedded in the polyethylene. The implant is then exposed to ? ray or electron beam irradiation in an amount of at least 2.5 Mrad followed by a heat treatment to prevent the implant from becoming brittle in the long term as well as to improve strength and wear. The method includes mixing a powder or granulate resin of UHMWPE with an aqueous liquid that contains anthocyanin in a predetermined amount. The water is evaporated in order to deposit the anthocyanin in a predetermined concentration on the polyethylene particles. The doped UHMWPE particles are compressed into blocks at temperatures in a range of approximately 135° C.-250° C. and pressures in a range of approximately 2-70 MPa. Medical implants are made from the blocks.Type: GrantFiled: February 17, 2012Date of Patent: August 14, 2012Assignee: Howmedica Osteonics Corp.Inventors: Shulin He, Shi-Shen Yau, Aiguo Wang, Daniel E. Lawrynowicz
-
Publication number: 20120187607Abstract: A method for manufacturing of ultrahigh molecular weight polyethylene (UHMWPE) for implants, where the implants have been machined out of UHMWPE blocks or extruded rods, has anthocyanin dispersely imbedded in the polyethylene. The implant is then exposed to ? ray or electron beam irradiation in an amount of at least 2.5 Mrad followed by a heat treatment to prevent the implant from becoming brittle in the long term as well as to improve strength and wear. The method includes mixing a powder or granulate resin of UHMWPE with an aqueous liquid that contains anthocyanin in a predetermined amount. The water is evaporated in order to deposit the anthocyanin in a predetermined concentration on the polyethylene particles. The doped UHMWPE particles are compressed into blocks at temperatures in a range of approximately 135° C.-250° C. and pressures in a range of approximately 2-70 MPa. Medical implants are made from the blocks.Type: ApplicationFiled: February 17, 2012Publication date: July 26, 2012Applicant: Howmedica Osteonics Corp.Inventors: Shulin He, Shi-Shen Yau, Aiguo Wang, Daniel E. Lawrynowicz