Patents by Inventor Daniel E. Partin
Daniel E. Partin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8249828Abstract: The present invention provides methods, devices, and systems for analyzing defects in an object such as a semiconductor wafer. In one embodiment, it provides a method of characterizing defects in semiconductor wafers during fabrication in a semiconductor fabrication facility. This method comprises the following actions. The semiconductor wafers are inspected to locate defects. Locations corresponding to the located defects are then stored in a defect file. A dual charged-particle beam system is automatically navigated to the vicinity defect location using information from the defect file. The defect is automatically identified and a charged particle beam image of the defect is then obtained. The charged particle beam image is then analyzed to characterize the defect. A recipe is then determined for further analysis of the defect. The recipe is then automatically executed to cut a portion of the defect using a charged particle beam.Type: GrantFiled: June 22, 2011Date of Patent: August 21, 2012Assignee: FEI CompanyInventors: Janet Teshima, Daniel E. Partin, James E. Hudson
-
Publication number: 20110251713Abstract: The present invention provides methods, devices, and systems for analyzing defects in an object such as a semiconductor wafer. In one embodiment, it provides a method of characterizing defects in semiconductor wafers during fabrication in a semiconductor fabrication facility. This method comprises the following actions. The semiconductor wafers are inspected to locate defects. Locations corresponding to the located defects are then stored in a defect file. A dual charged-particle beam system is automatically navigated to the vicinity defect location using information from the defect file. The defect is automatically identified and a charged particle beam image of the defect is then obtained. The charged particle beam image is then analyzed to characterize the defect. A recipe is then determined for further analysis of the defect. The recipe is then automatically executed to cut a portion of the defect using a charged particle beam.Type: ApplicationFiled: June 22, 2011Publication date: October 13, 2011Applicant: FEI CompanyInventors: JANET TESHIMA, Daniel E. Partin, James E. Hudson
-
Patent number: 7987072Abstract: The present invention provides methods, devices, and systems for analyzing defects in an object such as a semiconductor wafer. In one embodiment, it provides a method of characterizing defects in semiconductor wafers during fabrication in a semiconductor fabrication facility. This method comprises the following actions. The semiconductor wafers are inspected to locate defects. Locations corresponding to the located defects are then stored in a defect file. A dual charged-particle beam system is automatically navigated to the vicinity defect location using information from the defect file. The defect is automatically identified and a charged particle beam image of the defect is then obtained. The charged particle beam image is then analyzed to characterize the defect. A recipe is then determined for further analysis of the defect. The recipe is then automatically executed to cut a portion of the defect using a charged particle beam.Type: GrantFiled: January 5, 2009Date of Patent: July 26, 2011Assignee: FEI CompanyInventors: Janet Teshima, Daniel E. Partin, James E. Hudson
-
Publication number: 20090230303Abstract: The present invention provides methods, devices, and systems for analyzing defects in an object such as a semiconductor wafer. In one embodiment, it provides a method of characterizing defects in semiconductor wafers during fabrication in a semiconductor fabrication facility. This method comprises the following actions. The semiconductor wafers are inspected to locate defects. Locations corresponding to the located defects are then stored in a defect file. A dual charged-particle beam system is automatically navigated to the vicinity defect location using information from the defect file. The defect is automatically identified and a charged particle beam image of the defect is then obtained. The charged particle beam image is then analyzed to characterize the defect. A recipe is then determined for further analysis of the defect. The recipe is then automatically executed to cut a portion of the defect using a charged particle beam.Type: ApplicationFiled: January 5, 2009Publication date: September 17, 2009Applicant: FEI COMPANYInventors: Janet Teshima, Daniel E. Partin, James E. Hudson
-
Patent number: 7474986Abstract: The present invention provides methods, devices, and systems for analyzing defects in an object such as a semiconductor wafer. In one embodiment, it provides a method of characterizing defects in semiconductor wafers during fabrication in a semiconductor fabrication facility. This method comprises the following actions. The semiconductor wafers are inspected to locate defects. Locations corresponding to the located defects are then stored in a defect file. A dual charged-particle beam system is automatically navigated to the vicinity defect location using information from the defect file. The defect is automatically identified and a charged particle beam image of the defect is then obtained. The charged particle beam image is then analyzed to characterize the defect. A recipe is then determined for further analysis of the defect. The recipe is then automatically executed to cut a portion of the defect using a charged particle beam.Type: GrantFiled: August 1, 2006Date of Patent: January 6, 2009Assignee: FEI CompanyInventors: Janet Teshima, Daniel E. Partin, James E. Hudson
-
Patent number: 7103505Abstract: The present invention provides methods, devices, and systems for analyzing defects in an object such as a semiconductor wafer. In one embodiment, it provides a method of characterizing defects in semiconductor wafers during fabrication in a semiconductor fabrication facility. This method comprises the following actions. The semiconductor wafers are inspected to locate defects. Locations corresponding to the located defects are then stored in a defect file. A dual charged-particle beam system is automatically navigated to the vicinity defect location using information from the defect file. The defect is automatically identified and a charged particle beam image of the defect is then obtained. The charged particle beam image is then analyzed to characterize the defect. A recipe is then determined for further analysis of the defect. The recipe is then automatically executed to cut a portion of the defect using a charged particle beam.Type: GrantFiled: November 12, 2003Date of Patent: September 5, 2006Assignee: FEI CompanyInventors: Janet Teshima, Daniel E. Partin, James E. Hudson
-
Publication number: 20040158409Abstract: The present invention provides methods, devices, and systems for analyzing defects in an object such as a semiconductor wafer. In one embodiment, it provides a method of characterizing defects in semiconductor wafers during fabrication in a semiconductor fabrication facility. This method comprises the following actions. The semiconductor wafers are inspected to locate defects. Locations corresponding to the located defects are then stored in a defect file. A dual charged-particle beam system is automatically navigated to the vicinity defect location using information from the defect file. The defect is automatically identified and a charged particle beam image of the defect is then obtained. The charged particle beam image is then analyzed to characterize the defect. A recipe is then determined for further analysis of the defect. The recipe is then automatically executed to cut a portion of the defect using a charged particle beam.Type: ApplicationFiled: November 12, 2003Publication date: August 12, 2004Inventors: Janet Teshima, Daniel E. Partin, James E. Hudson