Patents by Inventor Daniel E. Ryan

Daniel E. Ryan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220266399
    Abstract: A method and apparatus for maintaining integrally bladed rotors (IBR) includes using first vibration data from a IBR vibration apparatus of a first IBR to determine a set of values for a corresponding set of inherent vibratory properties based on a reduced order model for an IBR type to which the first IBR belongs. Shape data indicating an initial shape of a surface of a first blade is used, with repair data that indicates a candidate repair to form a restored shape, to determine a change in a value of an inherent blade section vibratory property of the set of inherent vibratory properties. A condition of the first IBR is determined based at least in part on the change in the value of the inherent blade section vibratory property. The first IBR is maintained based on the condition.
    Type: Application
    Filed: January 20, 2021
    Publication date: August 25, 2022
    Inventors: Jerry H. Griffin, Drew M. FEINER, Blair E. ECHOLS, Michael J. CUSHMAN, Alex J. KOWALSKI, Daniel J. RYAN
  • Publication number: 20220195427
    Abstract: Provided herein are methods for inducing CRISPR/Cas-based gene regulation (e.g., genome editing or gene expression) of a target nucleic acid (e.g., target DNA or target RNA) in a cell. The methods include using modified single guide RNAs (sgRNAs) that enhance gene regulation of the target nucleic acid in a primary cell for use in ex vivo therapy or in a cell in a subject for use in in vivo therapy. Additionally, provided herein are methods for preventing or treating a genetic disease in a subject by administering a sufficient amount of a modified sgRNA to correct a mutation in a target gene associated with the genetic disease.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 23, 2022
    Applicants: The Board of Trustees of the Leland Stanford Junior University, Agilent Technologies, Inc.
    Inventors: Matthew H. Porteus, Ayal Hendel, Joe Clark, Rasmus O. Bak, Daniel E. Ryan, Douglas J. Dellinger, Robert Kaiser, Joel Myerson
  • Publication number: 20220195425
    Abstract: Provided herein are methods for inducing CRISPR/Cas-based gene regulation (e.g., genome editing or gene expression) of a target nucleic acid (e.g., target DNA or target RNA) in a cell. The methods include using modified single guide RNAs (sgRNAs) that enhance gene regulation of the target nucleic acid in a primary cell for use in ex vivo therapy or in a cell in a subject for use in in vivo therapy. Additionally, provided herein are methods for preventing or treating a genetic disease in a subject by administering a sufficient amount of a modified sgRNA to correct a mutation in a target gene associated with the genetic disease.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 23, 2022
    Applicants: The Board of Trustees of the Leland Stanford Junior University, Agilent Technologies, Inc.
    Inventors: Matthew H. Porteus, Ayal Hendel, Joe Clark, Rasmus O. Bak, Daniel E. Ryan, Douglas J. Dellinger, Robert Kaiser, Joel Myerson
  • Publication number: 20220195426
    Abstract: Provided herein are methods for inducing CRISPR/Cas-based gene regulation (e.g., genome editing or gene expression) of a target nucleic acid (e.g., target DNA or target RNA) in a cell. The methods include using modified single guide RNAs (sgRNAs) that enhance gene regulation of the target nucleic acid in a primary cell for use in ex vivo therapy or in a cell in a subject for use in in vivo therapy. Additionally, provided herein are methods for preventing or treating a genetic disease in a subject by administering a sufficient amount of a modified sgRNA to correct a mutation in a target gene associated with the genetic disease.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 23, 2022
    Applicants: The Board of Trustees of the Leland Stanford Junior Univerisity, Agilent Technologies, Inc.
    Inventors: Matthew H. Porteus, Ayal Hendel, Joe Clark, Rasmus O. Bak, Daniel E. Ryan, Douglas J. Dellinger, Robert Kaiser, Joel Myerson
  • Patent number: 11306309
    Abstract: Provided herein are methods for inducing CRISPR/Cas-based gene regulation (e.g., genome editing or gene expression) of a target nucleic acid (e.g., target DNA or target RNA) in a cell. The methods include using modified single guide RNAs (sgRNAs) that enhance gene regulation of the target nucleic acid in a primary cell for use in ex vivo therapy or in a cell in a subject for use in in vivo therapy. Additionally, provided herein are methods for preventing or treating a genetic disease in a subject by administering a sufficient amount of a modified sgRNA to correct a mutation in a target gene associated with the genetic disease.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: April 19, 2022
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Agilent Technologies
    Inventors: Matthew H. Porteus, Ayal Hendel, Joe Clark, Rasmus O. Bak, Daniel E. Ryan, Douglas J. Dellinger, Robert Kaiser, Joel Myerson
  • Publication number: 20210079389
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Application
    Filed: November 24, 2020
    Publication date: March 18, 2021
    Inventors: Daniel E. RYAN, Douglas J. DELLINGER, Jeffrey R. SAMPSON, Robert KAISER, Joel MYERSON
  • Patent number: 10900034
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: January 26, 2021
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Daniel E. Ryan, Douglas J. Dellinger, Jeffrey R. Sampson, Robert Kaiser, Joel Myerson
  • Publication number: 20200339980
    Abstract: The present invention relates to guide RNAs having chemical modifications and their use in CRISPR-Cas systems. The chemically modified guide RNAs have enhanced specificity for target polynucleotide sequences. The present invention also relates to methods of using chemically modified guide RNAs for cleaving or nicking polynucleotides, and for high specificity genome editing.
    Type: Application
    Filed: July 15, 2020
    Publication date: October 29, 2020
    Inventors: Douglas J Dellinger, Daniel E Ryan, Subhadeep Roy, Jeffrey R Sampson
  • Patent number: 10767175
    Abstract: The present invention relates to guide RNAs having chemical modifications and their use in CRISPR-Cas systems. The chemically modified guide RNAs have enhanced specificity for target polynucleotide sequences. The present invention also relates to methods of using chemically modified guide RNAs for cleaving or nicking polynucleotides, and for high specificity genome editing.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: September 8, 2020
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Douglas J Dellinger, Daniel E Ryan, Subhadeep Roy, Jeffrey R Sampson
  • Patent number: 10337001
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: July 2, 2019
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Daniel E. Ryan, Douglas J. Dellinger, Jeffrey R. Sampson, Robert Kaiser, Joel Myerson
  • Publication number: 20180119140
    Abstract: Provided herein are methods for inducing CRISPR/Cas-based gene regulation (e.g., genome editing or gene expression) of a target nucleic acid (e.g., target DNA or target RNA) in a cell. The methods include using modified single guide RNAs (sgRNAs) that enhance gene regulation of the target nucleic acid in a primary cell for use in ex vivo therapy or in a cell in a subject for use in in vivo therapy. Additionally, provided herein are methods for preventing or treating a genetic disease in a subject by administering a sufficient amount of a modified sgRNA to correct a mutation in a target gene associated with the genetic disease.
    Type: Application
    Filed: October 3, 2017
    Publication date: May 3, 2018
    Applicants: The Board of Trustees of the Leland Stanford Junior University, Agilent Technologies, Inc.
    Inventors: Matthew H. Porteus, Ayal Hendel, Joe Clark, Rasmus O. Bak, Daniel E. Ryan, Douglas J. Dellinger, Robert Kaiser, Joel Myerson
  • Patent number: 9932566
    Abstract: This invention discloses reagents and methods for increasing specificity and efficiency of RNA-guided genome editing.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: April 3, 2018
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Andrew Kennedy, Daniel E. Ryan
  • Publication number: 20180051281
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Application
    Filed: May 26, 2017
    Publication date: February 22, 2018
    Inventors: Daniel E. Ryan, Douglas J. Dellinger, Jeffrey R. Sampson, Robert Kaiser, Joel Myerson
  • Publication number: 20170355985
    Abstract: The present invention relates to guide RNAs having chemical modifications and their use in CRISPR-Cas systems. The chemically modified guide RNAs have enhanced specificity for target polynucleotide sequences. The present invention also relates to methods of using chemically modified guide RNAs for cleaving or nicking polynucleotides, and for high specificity genome editing.
    Type: Application
    Filed: April 20, 2017
    Publication date: December 14, 2017
    Inventors: Douglas J. Dellinger, Daniel E. Ryan, Subhadeep Roy, Jeffrey R. Sampson
  • Publication number: 20160289675
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Application
    Filed: December 3, 2015
    Publication date: October 6, 2016
    Inventors: Daniel E. Ryan, Douglas J. Dellinger, Jeffrey R. Sampson, Robert Kaiser, Joel Myerson
  • Publication number: 20160040189
    Abstract: This invention discloses reagents and methods for increasing specificity and efficiency of RNA-guided genome editing.
    Type: Application
    Filed: August 6, 2015
    Publication date: February 11, 2016
    Inventors: Andrew Kennedy, Daniel E. Ryan
  • Publication number: 20150010953
    Abstract: Provided herein is a method for producing a population of oligonucleotides that has reduced synthesis errors. In certain embodiments, the method comprises: a) obtaining an initial population of hairpin oligonucleotide molecules that each comprise a double-stranded stem region and a loop region; b) contacting the double-stranded region of the hairpin oligonucleotide molecules with a mismatch binding protein; and c) eliminating any molecules that bind to the mismatch binding protein, thereby producing a population of oligonucleotides that has reduced synthesis errors. A kit and a composition for performing the method are also provided.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 8, 2015
    Inventors: Derek Lee Lindstrom, Jeffrey R. Sampson, Daniel E. Ryan
  • Patent number: 5466516
    Abstract: A three layer laminated sheet of nonwoven thermoplastic fibers made by laminating a layer of meltblown fibers between two layers of needle punched fibers, and ultrasonically welding the layers together at a number of discrete points uniformly across the length and width of the sheet.
    Type: Grant
    Filed: September 10, 1993
    Date of Patent: November 14, 1995
    Assignee: Matarah Industries, Inc.
    Inventors: Thomas H. Lutzow, Daniel E. Ryan