Patents by Inventor Daniel E. Smalley

Daniel E. Smalley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11693363
    Abstract: A holographic display is comprised of space-multiplexed elemental modulators, each of which consists of a surface acoustic wave transducer atop an anisotropic waveguide. Each “line” of the overall display consists of a single anisotropic waveguide across the display's length with multiple surface acoustic wave transducers spaced along the waveguide length, although for larger displays, the waveguide may be divided into segments, each provided with separate illumination. Light that is undiffracted by a specific transducer is available for diffraction by subsequent transducers. Per transducer, guided-mode light is mode-converted to leaky-mode light, which propagates into the substrate away from the viewer before encountering a volume reflection grating and being reflected and steered towards the viewer. The display is transparent and all reflection volume gratings operate in the Bragg regime, thereby creating no dispersion of ambient light.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: July 4, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Sundeep Jolly, Nickolaos Savidis, V. Michael Bove, Jr., Bianca Datta, Daniel E. Smalley
  • Patent number: 11226591
    Abstract: In a method for forming a holographic image, light is provided to a flat-panel holographic video display that includes waveguide elements that each have a light-guiding substrate and an array of transducers configured to produce a diffraction grating comprising surface acoustic waves. The grating causes the waveguide to outcouple light, focusing it to, or producing wavefront curvatures consistent with it having emanated from, one or more points, in order to form a holographic image. The transducer array may include a large number of densely packed, vertically-adjacent transducers for each hogel for full parallax or may include a small number of vertically-adjacent transducers and a cylindrical optical element for each hogel. The display may be edge-illuminated by a collinear multicolor source. The substrate exit face may have nanopatterned areas alternated with flat areas in order to create regions of optimal internal reflection next to regions of low reflection.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: January 18, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: V. Michael Bove, Jr., Sundeep Jolly, Daniel E. Smalley
  • Publication number: 20210080906
    Abstract: A holographic display is comprised of space-multiplexed elemental modulators, each of which consists of a surface acoustic wave transducer atop an anisotropic waveguide. Each “line” of the overall display consists of a single anisotropic waveguide across the display's length with multiple surface acoustic wave transducers spaced along the waveguide length, although for larger displays, the waveguide may be divided into segments, each provided with separate illumination. Light that is undiffracted by a specific transducer is available for diffraction by subsequent transducers. Per transducer, guided-mode light is mode-converted to leaky-mode light, which propagates into the substrate away from the viewer before encountering a volume reflection grating and being reflected and steered towards the viewer. The display is transparent and all reflection volume gratings operate in the Bragg regime, thereby creating no dispersion of ambient light.
    Type: Application
    Filed: July 31, 2020
    Publication date: March 18, 2021
    Applicant: Massachusetts Institute of Technology
    Inventors: Sundeep Jolly, Nickolaos Savidis, V. Michael Bove, JR., Bianca Datta, Daniel E. Smalley
  • Publication number: 20210003968
    Abstract: In a method for forming a holographic image, light is provided to a flat-panel holographic video display that includes waveguide elements that each have a light-guiding substrate and an array of transducers configured to produce a diffraction grating comprising surface acoustic waves. The grating causes the waveguide to outcouple light, focusing it to, or producing wavefront curvatures consistent with it having emanated from, one or more points, in order to form a holographic image. The transducer array may include a large number of densely packed, vertically-adjacent transducers for each hogel for full parallax or may include a small number of vertically-adjacent transducers and a cylindrical optical element for each hogel. The display may be edge-illuminated by a collinear multicolor source. The substrate exit face may have nanopatterned areas alternated with flat areas in order to create regions of optimal internal reflection next to regions of low reflection.
    Type: Application
    Filed: October 22, 2019
    Publication date: January 7, 2021
    Applicant: Massachusetts Institute of Technology
    Inventors: V. Michael Bove, JR., Sundeep Jolly, Daniel E. Smalley
  • Patent number: 10452026
    Abstract: A flat-panel holographic video display includes a control layer and waveguide elements. Each waveguide element has a light-guiding substrate and an array of transducers configured to produce a diffraction grating comprising surface acoustic waves. The grating causes the waveguide to outcouple light, focusing it to, or producing wavefront curvatures consistent with it having emanated from, one or more points, in order to form a holographic image. The transducer array may include a large number of densely packed, vertically-adjacent transducers for each hogel for full parallax or may include a small number of vertically-adjacent transducers and a cylindrical optical element for each hogel. A spatial filter may be used to block noise. The display may be edge-illuminated by a collinear multicolor source. The substrate exit face may have nanopatterned areas alternated with flat areas in order to create regions of optimal internal reflection next to regions of low reflection.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: October 22, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: V. Michael Bove, Jr., Sundeep Jolly, Daniel E. Smalley
  • Patent number: 10108146
    Abstract: An anisotropic spatial acousto-optic modulator for a holographic display system includes a substrate, an anisotropic waveguide that guides light into a single polarization, and a transducer that generates surface acoustic waves that propagate linearly with the guided, polarized light, converting at least some of the polarized light into a leaky mode of orthogonally polarized light. The acoustic waves may be encoded with holographic information. The modulator may include coupling devices for coupling light into the waveguide, which may have multiple channels. A holographic video display system includes at least one anisotropic spatial acousto-optic modulator. The pattern of the surface acoustic waves, encoded with holographic information, acts as a diffraction pattern that causes the modulator output to form a wavefront that becomes at least part of a holographic image. The system may have multiple channels in multiple waveguides, wherein each waveguide writes one or more lines of the holographic image.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: October 23, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel E. Smalley, V. Michael Bove, Jr., Quinn Y. J. Smithwick
  • Patent number: 9983547
    Abstract: A holographic video display employs at least one light source adapted to produce at least one wavelength of monochromatic light, a video signal generator, at least one guided-wave acousto-optic modulator for diffracting light received from the light source according to signals received from the video signal generator, a vertical scanning subsystem, and an optical path between the acousto-optic modulator and the vertical scanning subsystem. The optical path may preferably include a Bravais lens system, at least one Fourier transform lens system, and at least one moving horizontal mirror.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: May 29, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel E. Smalley, Quinn Y. J. Smithwick, V. Michael Bove, Jr.
  • Publication number: 20180074457
    Abstract: A holographic display is comprised of space-multiplexed elemental modulators, each of which consists of a surface acoustic wave transducer atop an anisotropic waveguide. Each “line” of the overall display consists of a single anisotropic waveguide across the display's length with multiple surface acoustic wave transducers spaced along the waveguide length, although for larger displays, the waveguide may be divided into segments, each provided with separate illumination. Light that is undiffracted by a specific transducer is available for diffraction by subsequent transducers. Per transducer, guided-mode light is mode-converted to leaky-mode light, which propagates into the substrate away from the viewer before encountering a volume reflection grating and being reflected and steered towards the viewer. The display is transparent and all reflection volume gratings operate in the Bragg regime, thereby creating no dispersion of ambient light.
    Type: Application
    Filed: July 24, 2017
    Publication date: March 15, 2018
    Applicant: Massachusetts Institute of Technology
    Inventors: Sundeep Jolly, Nickolaos Savidis, V. Michael Bove, JR., Bianca Datta, Daniel E. Smalley
  • Publication number: 20160223988
    Abstract: A flat-panel holographic video display includes a control layer and waveguide elements. Each waveguide element has a light-guiding substrate and an array of transducers configured to produce a diffraction grating comprising surface acoustic waves. The grating causes the waveguide to outcouple light, focusing it to, or producing wavefront curvatures consistent with it having emanated from, one or more points, in order to form a holographic image. The transducer array may include a large number of densely packed, vertically-adjacent transducers for each hogel for full parallax or may include a small number of vertically-adjacent transducers and a cylindrical optical element for each hogel. A spatial filter may be used to block noise. The display may be edge-illuminated by a collinear multicolor source. The substrate exit face may have nanopatterned areas alternated with flat areas in order to create regions of optimal internal reflection next to regions of low reflection.
    Type: Application
    Filed: December 31, 2015
    Publication date: August 4, 2016
    Inventors: V. Michael Bove, JR., Sundeep Jolly, Daniel E. Smalley
  • Publication number: 20140300694
    Abstract: An anisotropic spatial acousto-optic modulator for a holographic display system includes a substrate, an anisotropic waveguide that guides light into a single polarization, and a transducer that generates surface acoustic waves that propagate linearly with the guided, polarized light, converting at least some of the polarized light into a leaky mode of orthogonally polarized light. The acoustic waves may be encoded with holographic information. The modulator may include coupling devices for coupling light into the waveguide, which may have multiple channels. A holographic video display system includes at least one anisotropic spatial acousto-optic modulator. The pattern of the surface acoustic waves, encoded with holographic information, acts as a diffraction pattern that causes the modulator output to form a wavefront that becomes at least part of a holographic image. The system may have multiple channels in multiple waveguides, wherein each waveguide writes one or more lines of the holographic image.
    Type: Application
    Filed: March 14, 2014
    Publication date: October 9, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Daniel E. Smalley, V. Michael Bove, JR., Quinn Y. J. Smithwick
  • Publication number: 20140300695
    Abstract: A full-parallax acousto-optic/electro-optic holographic video display includes a control layer and a piezo-electric layer, which includes a substrate and an array of anisotropic waveguide elements. Each waveguide element guides light into a single polarization and includes a horizontal grating, which diffracts light horizontally and comprises surface acoustic waves, and vertical grating, which diffracts light vertically and includes an electro-optic phased array. The surface acoustic waves propagate linearly with the guided, polarized light in the waveguide, converting the polarized light into a leaky mode of orthogonal polarized light. The combination of the horizontal and vertical gratings allows the waveguide element to focus light to multiple points and steer it in order to form a holographic image. The horizontal grating may be generated by interdigital acousto-optic transducers and the vertical grating may be controlled by electro-optic transducers.
    Type: Application
    Filed: March 17, 2014
    Publication date: October 9, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Daniel E. Smalley, V. Michael Bove, JR.
  • Publication number: 20120194638
    Abstract: A holographic video display employs at least one light source adapted to produce at least one wavelength of monochromatic light, a video signal generator, at least one guided-wave acousto-optic modulator for diffracting light received from the light source according to signals received from the video signal generator, a vertical scanning subsystem, and an optical path between the acousto-optic modulator and the vertical scanning subsystem. The optical path may preferably include a Bravais lens system, at least one Fourier transform lens system, and at least one moving horizontal mirror.
    Type: Application
    Filed: April 2, 2012
    Publication date: August 2, 2012
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Daniel E. SMALLEY, Quinn Y. J. SMITHWICK, V. Michael BOVE, JR.
  • Patent number: 8149265
    Abstract: A holographic video display comprises a monochromatic light source, a video signal generator, guided-wave acousto-optic modulators for diffracting light according to signals received from the video signal generator, a vertical scanning subsystem, and an optical path between the acousto-optic modulator and the vertical scanning subsystem. The optical path preferably comprises a Bravais lens system, first and second Fourier transform lens systems, and at least one holographic optical element or stationary mirror of continuous helical shape.
    Type: Grant
    Filed: August 11, 2007
    Date of Patent: April 3, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel E. Smalley, Quinn Y. J. Smithwick, V. Michael Bove, Jr.
  • Publication number: 20090040294
    Abstract: A holographic video display comprises a monochromatic light source, a video signal generator, guided-wave acousto-optic modulators for diffracting light according to signals received from the video signal generator, a vertical scanning subsystem, and an optical path between the acousto-optic modulator and the vertical scanning subsystem. The optical path preferably comprises a Bravais lens system, first and second Fourier transform lens systems, and at least one holographic optical element or stationary mirror of continuous helical shape.
    Type: Application
    Filed: August 11, 2007
    Publication date: February 12, 2009
    Applicant: Massachusetts Institute of Technology
    Inventors: Daniel E. Smalley, Quinn Y.J. Smithwick, V. Michael Bove, JR.