Patents by Inventor Daniel Emil Mack

Daniel Emil Mack has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230184132
    Abstract: The disclosure relates to a method for operating a gas turbine at a high temperature and to a gas turbine assembly. In the method, a gas turbine having a structural material and a thermal barrier layer disposed on the structural material is cooled down in a decelerated manner after operation at an operating temperature above 1000° C., so that damage to the structural material and/or the thermal barrier layer is minimized. In this way, the gas turbine can be operated permanently at temperatures above 1500° C.
    Type: Application
    Filed: April 22, 2021
    Publication date: June 15, 2023
    Inventors: Robert VAßEN, Daniel Emil MACK, Martin TANDLER, Olivier GUILLON
  • Patent number: 10857622
    Abstract: A method for generating a structured surface on a substrate includes analyzing a substrate surface of the substrate and selecting, as a function of a condition of the substrate surface, method parameters including focus diameter, pulse peak power, pulse energy, point spacing, pulse length, pulse spacing and/or pulse sequence. The method further includes generating, by partial ablation and partial deposition via treatment with an intensive pulsed laser beam, surface structures having dimensions in the sub-micrometer range such that a multi-scale surface structure in the sub-micrometer and micrometer range adapted to intrinsically inhomogeneous properties of the substrate surface in the sub-micrometer range is generated. The substrate is an inhomogeneous substrate.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: December 8, 2020
    Assignee: FORSCHUNGSZENTRUM JUELICH GMBH
    Inventors: Caren Sophia Gatzen, Daniel Emil Mack, Martin Tandler, Robert Vassen
  • Publication number: 20200198048
    Abstract: A method for generating a structured surface on a substrate includes analyzing a substrate surface of the substrate and selecting, as a function of a condition of the substrate surface, method parameters including focus diameter, pulse peak power, pulse energy, point spacing, pulse length, pulse spacing and/or pulse sequence. The method further includes generating, by partial ablation and partial deposition via treatment with an intensive pulsed laser beam, surface structures having dimensions in the sub-micrometer range such that a multi-scale surface structure in the sub-micrometer and micrometer range adapted to intrinsically inhomogeneous properties of the substrate surface in the sub-micrometer range is generated. The substrate is an inhomogeneous substrate.
    Type: Application
    Filed: June 13, 2018
    Publication date: June 25, 2020
    Applicant: Forschungszentrum Jülich GmbH
    Inventors: Caren Sophia GATZEN, Daniel Emil MACK, Martin TANDLER, Robert VASSEN
  • Publication number: 20190047253
    Abstract: An adhesion promoter layer for joining a high-temperature protection layer to a substrate includes a first layer of a first adhesion promoter material, provided for application to the substrate, and a second layer, arranged on the first layer and including a second adhesion promoter material having additionally introduced oxide dispersions, which is provided for joining a high-temperature protection layer.
    Type: Application
    Filed: February 3, 2017
    Publication date: February 14, 2019
    Inventors: Robert VASSEN, Jan BERGHOLZ, Daniel Emil MACK, Willem J. QUADAKKERS
  • Publication number: 20170216917
    Abstract: A method for producing a sensor on the surface of a functional layer, in which suitable sensor material in the form of powder or a wire is melted in a laser beam by way of a method similar to laser cladding and subsequently is applied to the surface of the functional layer. There is provided a considerably improved method for producing sensors, and in particular in-situ sensors, wherein the sensors can also be deposited onto a functional layer that, in part, is very coarse, without having to employ complex masks, as has previously been customary. The ease of adapting the method parameters ensures broad use both with respect to the sensor to be produced and the functional layer to be detected. The sensors thus produced are used, in particular, to detect components that are subject to high temperatures or the functional layers thereof. The sensors that can be produced in accordance with the invention include, in particular, temperature, pressure or voltage sensors, as well as acceleration sensors.
    Type: Application
    Filed: July 16, 2015
    Publication date: August 3, 2017
    Inventors: Yanil ZHANG, Robert VABEN, Daniel Emil MACK, Georg MAUER, Oliver GOUILLON
  • Publication number: 20130196141
    Abstract: Provided is a method for internally coating the pores of a porous functional coating made of a base material with a hardening material that reduces the diffusion of the base material and/or the reactivity of the base material with the environment thereof. The hardening material is deposited from the gas phase onto the interior surfaces of the pores. It was recognized that by depositing hardening material from the gas phase, it can be introduced much deeper into the pore system of the functional coating than had been possible according to the prior art. This applies in particular when the hardening material is not itself introduced into the pore s stem, but rather one or two precursors thereof, and from said precursors the actual hardening material forms at the internal surfaces of the pores.
    Type: Application
    Filed: April 5, 2011
    Publication date: August 1, 2013
    Inventors: Robert Vassen, Frank Vondahlen, Doris Sebold, Daniel Emil Mack, Georg Mauer, Detlev Stoever
  • Patent number: 7998601
    Abstract: A method produces thermal barrier coatings that adhere to components even at high temperatures and temperatures that change frequently. A gas-tight glass-metal composite coating is applied to the component and annealed. The corroded part of the gas-tight coating is then removed, and a second, porous coating is applied. The second coating can comprise a ceramic, in particular yttrium-stabilized zirconium oxide. A thermal barrier coating is provided that is a composite made of a gas-tight glass-metal composite coating and another porous coating disposed thereover. Because the boundary volume of the composite coating is partly crystallized to the other coating, superior adhesion within the composite is achieved. Thus, it is in particular possible to produce a composite made of silicate glass-metal composite coatings and yttrium-stabilized zirconium oxide that are temperature-stable for extended periods of time.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: August 16, 2011
    Assignee: Forschungszentrum Juelich GmbH
    Inventors: Daniel Emil Mack, Sonja-Michaela Gross, Robert Vassen, Detlev Stoever
  • Publication number: 20090110904
    Abstract: A method produces thermal barrier coatings that adhere to components even at high temperatures and temperatures that change frequently. A gas-tight glass-metal composite coating is applied to the component and annealed. The corroded part of the gas-tight coating is then removed, and a second, porous coating is applied. The second coating can comprise a ceramic, in particular yttrium-stabilized zirconium oxide. A thermal barrier coating is provided that is a composite made of a gas-tight glass-metal composite coating and another porous coating disposed thereover. Because the boundary volume of the composite coating is partly crystallized to the other coating, superior adhesion within the composite is achieved. Thus, it is in particular possible to produce a composite made of silicate glass-metal composite coatings and yttrium-stabilized zirconium oxide that are temperature-stable for extended periods of time.
    Type: Application
    Filed: October 17, 2006
    Publication date: April 30, 2009
    Inventors: Daniel Emil Mack, Sonja-Michaela Gross, Robert Vassen, Detlev Stoever