Patents by Inventor Daniel Eugene Meyer

Daniel Eugene Meyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10740651
    Abstract: The present approach relates to the use of trained artificial neural networks, such as convolutional neural networks, to classify vascular structures, such as using a hierarchical classification scheme. In certain approaches, the artificial neural network is trained using training data that is all or partly derived from synthetic vascular representations.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: August 11, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alberto Santamaria-Pang, Daniel Eugene Meyer, Michael Ernest Marino, Qing Li, Dmitry V. Dylov, Aritra Chowdhury
  • Patent number: 10423820
    Abstract: The subject matter of the present disclosure generally relates to techniques for image analysis. In certain embodiments, various morphological or intensity-based features as well as different thresholding approaches may be used to segment the subpopulation of interest and classify object in the images.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: September 24, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alberto Santamaria-Pang, Qing Li, Yunxia Sui, Dmitry Vladimirovich Dylov, Christopher James Sevinsky, Michael E. Marino, Michael J. Gerdes, Daniel Eugene Meyer, Fiona Ginty, Anup Sood
  • Publication number: 20190080146
    Abstract: The subject matter of the present disclosure generally relates to techniques for image analysis. In certain embodiments, various morphological or intensity-based features as well as different thresholding approaches may be used to segment the subpopulation of interest and classify object in the images.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 14, 2019
    Inventors: Alberto Santamaria-Pang, Qing Li, Yunxia Sui, Dmitry Vladimirovich Dylov, Christopher James Sevinsky, Michael E. Marino, Michael J. Gerdes, Daniel Eugene Meyer, Fiona Ginty, Anup Sood
  • Publication number: 20190001002
    Abstract: Design and use of an administered drug in the form of a nanoparticle or molecule is described. In certain examples, the nanoparticle has a core and a shell surrounding the core. The core may be configured or designed to provide useful X-ray attenuating properties, gamma ray emission properties, magnetic properties, or therapeutic effects. In certain aspects, the nanoparticle or molecule is sized so as to either distribute from or remain in the blood pool, while still being eliminated by the kidneys.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 3, 2019
    Inventors: Paul Francis Fitzgerald, Michael Ernest Marino, Peter Michael Edic, Daniel Eugene Meyer, Peter J. Bonitatibus, JR., Robert Edgar Colborn, Benjamin Ming-Yueh Yeh
  • Publication number: 20190001001
    Abstract: Design and use of an administered drug in the form of a nanoparticle or molecule is described. In certain examples, the nanoparticle has a core and a shell surrounding the core. The core may be configured or designed to provide useful X-ray attenuating properties, gamma ray emission properties, magnetic properties, or therapeutic effects. In certain aspects, the nanoparticle or molecule is sized so as to either distribute from or remain in the blood pool, while still being eliminated by the kidneys.
    Type: Application
    Filed: July 3, 2017
    Publication date: January 3, 2019
    Inventors: Paul Francis Fitzgerald, Michael Ernest Marino, Peter Michael Edic, Daniel Eugene Meyer, Peter J. Bonitatibus, Jr., Robert Edgar Colborn, Benjamin Ming-Yueh Yeh
  • Publication number: 20180121760
    Abstract: The present approach relates to the use of trained artificial neural networks, such as convolutional neural networks, to classify vascular structures, such as using a hierarchical classification scheme. In certain approaches, the artificial neural network is trained using training data that is all or partly derived from synthetic vascular representations.
    Type: Application
    Filed: October 27, 2017
    Publication date: May 3, 2018
    Inventors: Alberto Santamaria-Pang, Daniel Eugene Meyer, Michael Ernest Marino, Qing Li, Dmitry V. Dylov, Aritra Chowdhury
  • Patent number: 9846206
    Abstract: Magnetic material imaging (MMI) system including first and second sets of field-generating coils. Each of the field-generating coils of the first and second sets has an elongated segment that extends along an imaging axis of the medical imaging system. The imaging axis extends through a region-of-interest (ROI) of an object. The elongated segments of the first set of field-generating coils are positioned opposite the elongated segments of the second set of field-generating coils and the ROI is located between the first and second sets of field-generating coils. The MMI system also includes a coil-control module configured to control a flow of current through the first and second sets of field-generating coils to generate a selection field and to generate a drive field. The selection and drive fields combine to form a movable 1D field free region (FFR) that extends through the ROI.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: December 19, 2017
    Assignee: General Electric Company
    Inventors: Dominic Michael Graziani, Thomas Kwok-Fah Foo, Luca Marinelli, Daniel Eugene Meyer, Bruce Allan Hay
  • Patent number: 9474810
    Abstract: The present application discloses nanoparticles, particularly nanoparticles of superparamagnetic iron oxide, which find utility in iron therapy and diagnostic imaging such as magnetic resonance (MR). The disclosed nanoparticles have been treated with an ?-hydroxyphosphonic acid conjugate containing polyethylene glycol as a hydrophilic moiety to render the nanoparticles sufficiently hydrophilic to find utility in diagnostic imaging. Among the modified hydrophilic nanoparticles disclosed are those in which the hydrophilic moieties of the modifying conjugate are polyethylene oxide-based polymers and have a molecular weight greater than 5,000 dalton and less than or equal to about 30,000 daltons. Surprisingly, these nanoparticles have a more rapid and complete processing in liver of retained nanoparticles when compared to similar nanoparticles in which the PEG-based hydrophilic moiety has a molecular weight less than 5,000.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: October 25, 2016
    Assignee: General Electric Company
    Inventors: Bruce Allan Hay, Daniel Eugene Meyer, Brian Christopher Bales, Michael Todd Luttrell
  • Patent number: 9251937
    Abstract: A method of sterilizing a nanoparticle preparation at a high temperature is provided. A plurality of nanoparticles are purified to form the preparation, wherein the nanoparticles comprise at least a core and a shell and the shell comprises one or more ligand species attached to the core. The nanoparticle preparation is made by a purified nanoparticle composition, a carrier fluid and an excess of the one or more ligand species not attached to the core. The ligand species attached to the core and the excess ligand species added after purification are structurally identical. The nanoparticle preparation provided by the present invention may be used as contrast agents in medical imaging techniques such as X-ray and magnetic resonance imaging.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: February 2, 2016
    Assignee: General Electric Company
    Inventors: Brian Christopher Bales, Brian James Grimmond, Daniel Eugene Meyer, Bruce Allan Hay, Michael Todd Luttrell
  • Publication number: 20140159712
    Abstract: Magnetic material imaging (MMI) system including first and second sets of field-generating coils. Each of the field-generating coils of the first and second sets has an elongated segment that extends along an imaging axis of the medical imaging system. The imaging axis extends through a region-of-interest (ROI) of an object. The elongated segments of the first set of field-generating coils are positioned opposite the elongated segments of the second set of field-generating coils and the ROI is located between the first and second sets of field-generating coils. The MMI system also includes a coil-control module configured to control a flow of current through the first and second sets of field-generating coils to generate a selection field and to generate a drive field. The selection and drive fields combine to form a movable 1D field free region (FFR) that extends through the ROI.
    Type: Application
    Filed: August 19, 2013
    Publication date: June 12, 2014
    Applicant: General Electric Company
    Inventors: Dominic Michael Graziani, Thomas Kwok-Fah Foo, Luca Marinelli, Daniel Eugene Meyer, Bruce Allen Hay
  • Publication number: 20140003997
    Abstract: A method of sterilizing a nanoparticle preparation at a high temperature is provided. A plurality of nanoparticles are purified to form the preparation, wherein the nanoparticles comprise at least a core and a shell and the shell comprises one or more ligand species attached to the core. The nanoparticle preparation is made by a purified nanoparticle composition, a carrier fluid and an excess of the one or more ligand species not attached to the core. The ligand species attached to the core and the excess ligand species added after purification are structurally identical. The nanoparticle preparation provided by the present invention may be used as contrast agents in medical imaging techniques such as X-ray and magnetic resonance imaging.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Brian Christopher Bales, Brian James Grimmond, Daniel Eugene Meyer, Bruce Allan Hay, Michael Todd Luttrell
  • Publication number: 20130230463
    Abstract: The present application discloses nanoparticles, particularly nanoparticles of superparamagnetic iron oxide, which find utility in iron therapy and diagnostic imaging such as magnetic resonance (MR). The disclosed nanoparticles have been treated with an ?-hydroxyphosphonic acid conjugate containing polyethylene glycol as a hydrophilic moiety to render the nanoparticles sufficiently hydrophilic to find utility in diagnostic imaging. Among the modified hydrophilic nanoparticles disclosed are those in which the hydrophilic moieties of the modifying conjugate are polyethylene oxide-based polymers and have a molecular weight greater than 5,000 dalton and less than or equal to about 30,000 daltons. Surprisingly, these nanoparticles have a more rapid and complete processing in liver of retained nanoparticles when compared to similar nanoparticles in which the PEG-based hydrophilic moiety has a molecular weight less than 5,000.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bruce Allan HAY, Daniel Eugene MEYER, Brian Christopher BALES, Michael Todd LUTTRELL
  • Patent number: 8246932
    Abstract: Composition of non-radioactive traceable metal isotope-enriched nanoparticles, and methods of their use for determining in-vivo biodistribution are provided. The methods comprise the steps of: (a) introducing the nanoparticles into the biological material, wherein the nanoparticles comprise at least one inorganic core, and the inorganic core comprises at least two metal isotopes in a predetermined ratio; wherein at least one metal isotope is enriched non-radioactive traceable metal isotope and (b) determining the distribution of the nanoparticles in the biological material based on the predetermined ratio of the metal isotopes.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: August 21, 2012
    Assignee: General Electric Company
    Inventors: Peter John Bonitatibus, Jr., Amit Mohan Kulkarni, Andrew Soliz Torres, Ying Zhou, Chiaki Treynor, Daniel Eugene Meyer
  • Publication number: 20100189643
    Abstract: The present invention provides conjugate compounds comprising (a) an active compound; (b) optionally, but in some embodiments preferably, an affinity binding agent; and (c) a block copolymer, the block copolymer comprising: (i) a first elastin-like polypeptide having a first Tt and (U) a second elastin-like polypeptide having a second Tt greater than the first Tt. Method for the targeted delivering of an active compound in vivo to a selected region within a subject with such agents are also described.
    Type: Application
    Filed: July 17, 2007
    Publication date: July 29, 2010
    Applicant: DUKE UNIVERSITY
    Inventors: Ashutosh Chilkoti, Matthew Robert Dreher, Daniel Eugene Meyer
  • Publication number: 20090246143
    Abstract: Composition of non-radioactive traceable metal isotope-enriched nanoparticles, and methods of their use for determining in-vivo biodistribution are provided. The methods comprise the steps of: (a) introducing the nanoparticles into the biological material, wherein the nanoparticles comprise at least one inorganic core, and the inorganic core comprises at least two metal isotopes in a predetermined ratio; wherein at least one metal isotope is enriched non-radioactive traceable metal isotope and (b) determining the distribution of the nanoparticles in the biological material based on the predetermined ratio of the metal isotopes.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 1, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Peter John Bonitatibus, JR., Amit Mohan Kulkarni, Andrew Soliz Torres, Ying Zhou, Chiaki Treynor, Daniel Eugene Meyer