Patents by Inventor Daniel Fellmeth

Daniel Fellmeth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11704688
    Abstract: A wireless charger system for inductively charging a rechargeable battery of an implantable pulse generator (IPG) implanted in a human body is provided. A charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. An end-of-charge (EOC) circuit continuously monitors the reflected impedance from a reflected impedance sensor and determines the end of charge when a predetermined pattern of the reflected impedance corresponding to an EOC signal from the IPG is received. Advantageously, receiving the EOC signal through the charging coil eliminates the need to provide a separate communication circuit in the IPG that communicates with the charger.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: July 18, 2023
    Assignee: Cirtec Medical Corp.
    Inventors: Raghavendra Angara, Saif Khalil, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 11590351
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and control through software on a Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: February 28, 2023
    Assignee: CIRTEC MEDICAL CORPORATION
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 11260230
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power. The IPG also contains circuity to indicate to a patient that proper alignment exists between the IPG and an external charger to charge a battery in the IPG.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: March 1, 2022
    Assignee: Cirtec Medical Corporation
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth, Hrishikesh Gadagkar
  • Patent number: 11005305
    Abstract: A wireless charger for automatically tuning an optimum frequency to inductively charge a rechargeable battery of an implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body is provided. The charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. An optimization circuit detects a reflected impedance of the charging coil through a reflected impedance sensor, and select an optimum frequency of a charging signal supplied to the charging coil based on the detected reflected impedances of a plurality of charging frequencies in a selected frequency range. Advantageously, the optimum charging frequency provides a more efficient way to charge the IPG's rechargeable battery.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: May 11, 2021
    Assignee: CIRTEC MEDICAL CORP.
    Inventors: Raghavendra Angara, Saif Khalil, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20210035154
    Abstract: A wireless charger system for inductively charging a rechargeable battery of an implantable pulse generator (IPG) implanted in a human body is provided. A charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. An end-of-charge (EOC) circuit continuously monitors the reflected impedance from a reflected impedance sensor and determines the end of charge when a predetermined pattern of the reflected impedance corresponding to an EOC signal from the IPG is received. Advantageously, receiving the EOC signal through the charging coil eliminates the need to provide a separate communication circuit in the IPG that communicates with the charger.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 4, 2021
    Inventors: Raghavendra Angara, Saif Khalil, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 10905881
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: February 2, 2021
    Assignee: Cirtec Medical Corp.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 10810614
    Abstract: A wireless charger system for inductively charging a rechargeable battery of an implantable pulse generator (IPG) implanted in a human body is provided. A charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. An end-of-charge (EOC) circuit continuously monitors the reflected impedance from a reflected impedance sensor and determines the end of charge when a predetermined pattern of the reflected impedance corresponding to an EOC signal from the IPG is received. Advantageously, receiving the EOC signal through the charging coil eliminates the need to provide a separate communication circuit in the IPG that communicates with the charger.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: October 20, 2020
    Assignee: CIRTEC MEDICAL CORP.
    Inventors: Raghavendra Angara, Saif Khalil, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20200108254
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power. The IPG also contains circuity to indicate to a patient that proper alignment exists between the IPG and an external charger to charge a battery in the IPG.
    Type: Application
    Filed: September 17, 2019
    Publication date: April 9, 2020
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth, Hrishikesh Gadagkar
  • Patent number: 10512777
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self-alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and [PG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: December 24, 2019
    Assignee: Cirtec Medical Corp.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20190314633
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and control through software on a Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Application
    Filed: April 22, 2019
    Publication date: October 17, 2019
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 10413730
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power. The IPG also contains circuitry to indicate to a patient that proper alignment exists between the IPG and an external charger to charge a battery in the IPG.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: September 17, 2019
    Assignee: Cirtec Medical Corp.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth, Hrishikesh Gadagkar
  • Publication number: 20190273404
    Abstract: A wireless charger for automatically tuning an optimum frequency to inductively charge a rechargeable battery of an implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body is provided. The charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. An optimization circuit detects a reflected impedance of the charging coil through a reflected impedance sensor, and select an optimum frequency of a charging signal supplied to the charging coil based on the detected reflected impedances of a plurality of charging frequencies in a selected frequency range. Advantageously, the optimum charging frequency provides a more efficient way to charge the IPG's rechargeable battery.
    Type: Application
    Filed: February 4, 2019
    Publication date: September 5, 2019
    Inventors: Raghavendra Angara, Saif Khalil, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20190269920
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 5, 2019
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 10335597
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self-alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: July 2, 2019
    Assignee: Cirtec Medical Corp.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 10265526
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: April 23, 2019
    Assignee: Cirtec Medical Corp.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20190105497
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self-alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and [PG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Application
    Filed: December 10, 2018
    Publication date: April 11, 2019
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 10226628
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: March 12, 2019
    Assignee: Cirtec Medical Corp.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 10199884
    Abstract: A wireless charger for automatically tuning an optimum frequency to inductively charge a rechargeable battery of an implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body is provided. The charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. An optimization circuit detects a reflected impedance of the charging coil through a reflected impedance sensor, and select an optimum frequency of a charging signal supplied to the charging coil based on the detected reflected impedances of a plurality of charging frequencies in a selected frequency range. Advantageously, the optimum charging frequency provides a more efficient way to charge the IPG's rechargeable battery.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: February 5, 2019
    Assignee: Cirtec Medical Corp.
    Inventors: Raghavendra Angara, Saif Khalil, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 10149977
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self-alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: December 11, 2018
    Assignee: Cirtec Medical Corp.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20180289963
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Application
    Filed: June 8, 2018
    Publication date: October 11, 2018
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth