Patents by Inventor Daniel Fernando CAMPOS
Daniel Fernando CAMPOS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12099552Abstract: A computer-implemented technique is described herein for assisting a user in advancing a task objective. The technique uses a suggestion-generating system (SGS) to provide one or more suggestions to a user in response to at least a last-submitted query provided by the user. The SGS may correspond to a classification-type or generative-type neural network. The SGS uses a machine-trained model that is trained using a multi-task training framework based on plural groups of training examples, which, in turn, are produced using different respective example-generating methods. One such example-generating method constructs a training example from queries in a search session. It operates by identifying the task-related intent the queries, and then identifying at least one sequence of queries in the search session that exhibits a coherent task-related intent. A training example is constructed based on queries in such a sequence.Type: GrantFiled: November 7, 2023Date of Patent: September 24, 2024Assignee: Microsoft Technology Licensing, LLCInventors: Corby Louis Rosset, Chenyan Xiong, Paul Nathan Bennett, Saurabh Kumar Tiwary, Daniel Fernando Campos, Xia Song, Nicholas Eric Craswell
-
Publication number: 20240281446Abstract: An advanced search system leverages a pre-trained large language model to enhance user query responses. The system, equipped with hardware processors, a search query via an interface and accesses a pre-trained large language model designed to respond to the search query. The system fine-tunes the model to generate a task-specific generative model. The system employs the task-specific generative model to generate a search result to the search query and analyzes the search result based on a performance metric associated with the task-specific generative model. The system refines the task-specific generative model based on the analyzing of the search result.Type: ApplicationFiled: February 16, 2024Publication date: August 22, 2024Inventors: Rahil Bathwal, Daniel Fernando Campos, Ashwin Devaraj, Seth Michael Li, Yash Pande, Vivek Raghunathan, Rajhans Samdani, Danmei Xu
-
Publication number: 20240281487Abstract: Enhanced search results are generated using multi-document summarization. A multi-document summarization system receives a search query from a user and retrieves a plurality of search result documents based on the search query. The summarization system generates a summary of each of the plurality of search result documents using distinct per-document summarization machine learning models, where the distinct per-document summarization machine learning models are trained on a training dataset. The summarization system synthesizes the summary of each of the plurality of search result documents into a single-consolidated answer responsive to the received search query. The multi-document summarization system formats the single-consolidated answer to include citations to the plurality of search result documents.Type: ApplicationFiled: February 16, 2024Publication date: August 22, 2024Inventors: Rahil Bathwal, Daniel Fernando Campos, Ashwin Devaraj, Seth Michael Li, Muhua Ngan, Vivek Raghunathan, Sridhar Ramaswamy, Rajhans Samdani, Chiu Wah So, Nitya Kannan Tarakad
-
Publication number: 20240070202Abstract: A computer-implemented technique is described herein for assisting a user in advancing a task objective. The technique uses a suggestion-generating system (SGS) to provide one or more suggestions to a user in response to at least a last-submitted query provided by the user. The SGS may correspond to a classification-type or generative-type neural network. The SGS uses a machine-trained model that is trained using a multi-task training framework based on plural groups of training examples, which, in turn, are produced using different respective example-generating methods. One such example-generating method constructs a training example from queries in a search session. It operates by identifying the task-related intent the queries, and then identifying at least one sequence of queries in the search session that exhibits a coherent task-related intent. A training example is constructed based on queries in such a sequence.Type: ApplicationFiled: November 7, 2023Publication date: February 29, 2024Applicant: Microsoft Technology Licensing, LLCInventors: Corby Louis ROSSET, Chenyan XIONG, Paul Nathan BENNETT, Saurabh Kumar TIWARY, Daniel Fernando CAMPOS, Xia SONG, Nicholas Eric CRASWELL
-
Patent number: 11853362Abstract: A computer-implemented technique is described herein for assisting a user in advancing a task objective. The technique uses a suggestion-generating system (SGS) to provide one or more suggestions to a user in response to at least a last-submitted query provided by the user. The SGS may correspond to a classification-type or generative-type neural network. The SGS uses a machine-trained model that is trained using a multi-task training framework based on plural groups of training examples, which, in turn, are produced using different respective example-generating methods. One such example-generating method constructs a training example from queries in a search session. It operates by identifying the task-related intent the queries, and then identifying at least one sequence of queries in the search session that exhibits a coherent task-related intent. A training example is constructed based on queries in such a sequence.Type: GrantFiled: April 16, 2020Date of Patent: December 26, 2023Assignee: Microsoft Technology Licensing, LLCInventors: Corby Louis Rosset, Chenyan Xiong, Paul Nathan Bennett, Saurabh Kumar Tiwary, Daniel Fernando Campos, Xia Song, Nicholas Eric Craswell
-
Patent number: 11657223Abstract: A system for extracting a key phrase from a document includes a neural key phrase extraction model (“BLING-KPE”) having a first layer to extract a word sequence from the document, a second layer to represent each word in the word sequence by ELMo embedding, position embedding, and visual features, and a third layer to concatenate the ELMo embedding, the position embedding, and the visual features to produce hybrid word embeddings. A convolutional transformer models the hybrid word embeddings to n-gram embeddings, and a feedforward layer converts the n-gram embeddings into a probability distribution over a set of n-grams and calculates a key phrase score of each n-gram. The neural key phrase extraction model is trained on annotated data based on a labeled loss function to compute cross entropy loss of the key phrase score of each n-gram as compared with a label from the annotated dataset.Type: GrantFiled: December 16, 2021Date of Patent: May 23, 2023Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Li Xiong, Chuan Hu, Arnold Overwijk, Junaid Ahmed, Daniel Fernando Campos, Chenyan Xiong
-
Publication number: 20220108078Abstract: A system for extracting a key phrase from a document includes a neural key phrase extraction model (“BLING-KPE”) having a first layer to extract a word sequence from the document, a second layer to represent each word in the word sequence by ELMo embedding, position embedding, and visual features, and a third layer to concatenate the ELMo embedding, the position embedding, and the visual features to produce hybrid word embeddings. A convolutional transformer models the hybrid word embeddings to n-gram embeddings, and a feedforward layer converts the n-gram embeddings into a probability distribution over a set of n-grams and calculates a key phrase score of each n-gram. The neural key phrase extraction model is trained on annotated data based on a labeled loss function to compute cross entropy loss of the key phrase score of each n-gram as compared with a label from the annotated dataset.Type: ApplicationFiled: December 16, 2021Publication date: April 7, 2022Inventors: Li XIONG, Chuan HU, Arnold OVERWIJK, Junaid AHMED, Daniel Fernando CAMPOS, Chenyan XIONG
-
Patent number: 11250214Abstract: A system for extracting a key phrase from a document includes a neural key phrase extraction model (“BLING-KPE”) having a first layer to extract a word sequence from the document, a second layer to represent each word in the word sequence by ELMo embedding, position embedding, and visual features, and a third layer to concatenate the ELMo embedding, the position embedding, and the visual features to produce hybrid word embeddings. A convolutional transformer models the hybrid word embeddings to n-gram embeddings, and a feedforward layer converts the n-gram embeddings into a probability distribution over a set of n-grams and calculates a key phrase score of each n-gram. The neural key phrase extraction model is trained on annotated data based on a labeled loss function to compute cross entropy loss of the key phrase score of each n-gram as compared with a label from the annotated dataset.Type: GrantFiled: July 2, 2019Date of Patent: February 15, 2022Assignee: Microsoft Technology Licensing, LLCInventors: Li Xiong, Chuan Hu, Arnold Overwijk, Junaid Ahmed, Daniel Fernando Campos, Chenyan Xiong
-
Publication number: 20210326742Abstract: A computer-implemented technique is described herein for assisting a user in advancing a task objective. The technique uses a suggestion-generating system (SGS) to provide one or more suggestions to a user in response to at least a last-submitted query provided by the user. The SGS may correspond to a classification-type or generative-type neural network. The SGS uses a machine-trained model that is trained using a multi-task training framework based on plural groups of training examples, which, in turn, are produced using different respective example-generating methods. One such example-generating method constructs a training example from queries in a search session. It operates by identifying the task-related intent the queries, and then identifying at least one sequence of queries in the search session that exhibits a coherent task-related intent. A training example is constructed based on queries in such a sequence.Type: ApplicationFiled: April 16, 2020Publication date: October 21, 2021Inventors: Corby Louis ROSSET, Chenyan XIONG, Paul Nathan BENNETT, Saurabh Kumar TIWARY, Daniel Fernando CAMPOS, Xia SONG, Nicholas Eric CRASWELL
-
Publication number: 20210004439Abstract: A system for extracting a key phrase from a document includes a neural key phrase extraction model (“BLING-KPE”) having a first layer to extract a word sequence from the document, a second layer to represent each word in the word sequence by ELMo embedding, position embedding, and visual features, and a third layer to concatenate the ELMo embedding, the position embedding, and the visual features to produce hybrid word embeddings. A convolutional transformer models the hybrid word embeddings to n-gram embeddings, and a feedforward layer converts the n-gram embeddings into a probability distribution over a set of n-grams and calculates a key phrase score of each n-gram. The neural key phrase extraction model is trained on annotated data based on a labeled loss function to compute cross entropy loss of the key phrase score of each n-gram as compared with a label from the annotated dataset.Type: ApplicationFiled: July 2, 2019Publication date: January 7, 2021Applicant: Microsoft Technology Licensing, LLCInventors: Li XIONG, Chuan HU, Arnold OVERWIJK, Junaid AHMED, Daniel Fernando CAMPOS, Chenyan XIONG