Patents by Inventor Daniel Fulford

Daniel Fulford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11908728
    Abstract: Techniques herein include a process chamber for depositing thin films to backside surfaces of wafers to reduce wafer bowing and distortion. A substrate support provides an annular perimeter seal around the bottom and/or side of the wafer which allows the majority of the substrate backside to be exposed to a process environment. A supported wafer separates the chamber into lower and upper chambers that provide different process environments. The lower section of the processing chamber includes deposition hardware configured to apply and remove thin films. The upper section can remain a chemically inert environment, protecting the existing features on the top surface of the wafer. Multiple exhausts and differential pressures are used to prevent deposition gasses from accessing the working surface of a wafer.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: February 20, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Ronald Nasman, Gerrit J. Leusink, Rodney L. Robison, Hoyoung Kang, Daniel Fulford
  • Publication number: 20240042472
    Abstract: Light can be used to monitor coating a liquid on a substrate. By directing the light to a spot on the substrate, when the liquid passes through the spot, some light will be reflected, while some light will be scattered. Monitoring this behavior can indicate whether a substrate has been successfully coated with the liquid, as well as identifying defects. Further, coating times can be monitored to make process adjustments.
    Type: Application
    Filed: October 19, 2023
    Publication date: February 8, 2024
    Applicant: Tokyo Electron Limited
    Inventors: Mirko VUKOVIC, Daniel FULFORD, Anton J. DEVILLIERS
  • Patent number: 11883837
    Abstract: Light can be used to monitor coating a liquid on a substrate. By directing the light to a spot on the substrate, when the liquid passes through the spot, some light will be reflected, while some light will be scattered. Monitoring this behavior can indicate whether a substrate has been successfully coated with the liquid, as well as identifying defects. Further, coating times can be monitored to make process adjustments.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: January 30, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Mirko Vukovic, Daniel Fulford, Anton J. Devilliers
  • Patent number: 11854806
    Abstract: Devices are made by self-aligned quad pitch patterning (SAQP) and methods for making devices by self-aligned quad pitch patterning (SAQP) use a single spacer in the process. An intermediate process step called self-aligned double patterning (SADP) is used to double the pitch following the spacer deposition. A pattern is formed on a substrate, the pattern having ultra-fine resolutions by repeating the SADP step twice for pitch quadrupling and introducing a reversal layer to form a fine trench pattern and hole pattern. An initial pattern is obtained by the X-Y double line exposures. Reverse material is applied on the initial pattern and subsequent etching process converts each initial trench pattern to a line. The pattern designs or pattern layouts have improved LER/LWR (line edge roughness and line width roughness respectively) for below 12 nm lines and trenches in order to create self-aligned cross pitch quad trenches.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: December 26, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Daniel Fulford, Anton J. Devilliers
  • Patent number: 11841617
    Abstract: A method of forming a pattern on a substrate is provided. The method includes forming a first layer on an underlying layer of the substrate, where the first layer is patterned to have a first structure. The method also includes depositing a grafting material on side surfaces of the first structure, where the grafting material includes a solubility-shifting material. The method further includes diffusing the solubility-shifting material by a predetermined distance into a neighboring structure that abuts the solubility-shifting material, where the solubility-shifting material changes solubility of the neighboring structure in a developer, and removing soluble portions of the neighboring structure using the developer to form a second structure.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: December 12, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Anton J. Devilliers, Jodi Grzeskowiak, Daniel Fulford, Richard A. Farrell, Jeffrey Smith
  • Patent number: 11776812
    Abstract: Devices are made by self-aligned quad pitch patterning (SAQP), staircase patterning and double staircase patterning. Methods for making devices by self-aligned quad pitch patterning (SAQP) use a single spacer in the process. Methods for making devices by staircase patterning and double staircase patterning do not use a spacer. An intermediate process step called self-aligned double patterning (SADP) is used to double the pitch following the spacer deposition. A pattern is formed on a substrate, the pattern having ultra-fine resolutions by repeating the SADP step twice for pitch quadrupling and introducing a reversal layer to form a fine trench pattern and hole pattern. The pattern designs or pattern layouts have improved LER/LWR (line edge roughness and line width roughness respectively) for below 12 nm lines and trenches in order to create self-aligned cross pitch quad trenches.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: October 3, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Daniel Fulford, Anton J. Devilliers
  • Patent number: 11656550
    Abstract: In certain embodiments, a method for processing a semiconductor substrate includes depositing a resin film on a substrate that has microfabricated structures defining recesses. The resin film fills the recesses and covers the microfabricated structures. The method includes performing, using a photoacid generator (PAG)-based process, a localized removal of the resin film to remove the resin film to respective first depths in the recesses, at least two depths of the respective first depths being different depths. The method includes repeatedly performing, using a thermal acid generator (TAG)-based process and until a predetermined condition is met, a uniform removal of a remaining portion of the resin film to remove a substantially uniform depth of the resin film in the recesses.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: May 23, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Daniel Fulford, Michael Murphy, Jodi Grzeskowiak, Jeffrey Smith
  • Publication number: 20230052800
    Abstract: A method of forming sub-resolution features that includes: exposing a photoresist layer formed over a substrate to a first ultraviolet light (UV) radiation having a first wavelength of 365 nm or longer through a mask configured to form features at a first critical dimension, the photoresist layer including first portions exposed to the first UV radiation and second portions unexposed to the first UV radiation after exposing with the first UV radiation; exposing the first portions and the second portions to a second UV radiation; and developing the photoresist layer after exposing the photoresist layer to the second UV radiation to form the sub-resolution features having a second critical dimension less than the first critical dimension.
    Type: Application
    Filed: November 4, 2021
    Publication date: February 16, 2023
    Inventors: Daniel Fulford, Jodi Grzeskowiak, H. Jim Fulford, Sean Smith, Partha Mukhopadhyay, Michael Murphy, Anton deVilliers
  • Patent number: 11393694
    Abstract: Techniques herein include methods for planarizing films including films used in the fabrication of semiconductor devices. Such fabrication can generate structures on a surface of a substrate, and these structures can have a spatially variable density across the surface. Planarization methods herein include depositing a first acid-labile film overtop the structures and the substrate, the first acid-labile film filling between the structures. A second acid-labile film is deposited overtop the first acid-labile film. An acid source film is deposited overtop the second acid-labile film, the acid source film including an acid generator configured to generate an acid in response to receiving radiation having a predetermined wavelength of light. A pattern of radiation is projected over the acid source film, the pattern of radiation having a spatially variable intensity at predetermined areas of the pattern of radiation.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: July 19, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Anton Devilliers, Robert Brandt, Jeffrey Smith, Jodi Grzeskowiak, Daniel Fulford
  • Patent number: 11335566
    Abstract: The disclosure relates to techniques and methods for planarizing a substrate by amplifying and controlling z-height technology. Variability of z-height can be modeled or measured for each device. A counter height pattern can then be created and processed on a substrate. By using different materials with different etch rates, a planarizing pattern can be transferred to the substrate or system to create a planarized substrate surface for improved lithography. Additionally, a transition region slope can be precisely controlled using the same methods.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: May 17, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Daniel Fulford, Jodi Grzeskowiak, Anton J. Devilliers
  • Publication number: 20220066317
    Abstract: In certain embodiments, a method for processing a semiconductor substrate includes depositing a resin film on a substrate that has microfabricated structures defining recesses. The resin film fills the recesses and covers the microfabricated structures. The method includes performing, using a photoacid generator (PAG)-based process, a localized removal of the resin film to remove the resin film to respective first depths in the recesses, at least two depths of the respective first depths being different depths. The method includes repeatedly performing, using a thermal acid generator (TAG)-based process and until a predetermined condition is met, a uniform removal of a remaining portion of the resin film to remove a substantially uniform depth of the resin film in the recesses.
    Type: Application
    Filed: December 17, 2020
    Publication date: March 3, 2022
    Inventors: Daniel Fulford, Michael Murphy, Jodi Grzeskowiak, Jeffrey Smith
  • Patent number: 11201051
    Abstract: Techniques herein include methods of forming conformal films on substrates including semiconductor wafers. Conventional film forming techniques can be slow and expensive. Methods herein include depositing a self-assembled monolayer (SAM) film over the substrate. The SAM film can include an acid generator configured to generate acid in response to a predetermined stimulus. A polymer film is deposited over the SAM film. The polymer film is soluble to a predetermined developer and configured to change solubility in response to exposure to the acid. The acid generator is stimulated and generates acid. The acid is diffused into the polymer film. The polymer film is developed with the predetermined developer to remove portions of the polymer film that are not protected from the predetermined developer. These process steps can be repeated a desired number of times to grow an aggregate film layer by layer.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: December 14, 2021
    Assignee: Tokyo Electron Limited
    Inventors: Jodi Grzeskowiak, Anton J. Devilliers, Daniel Fulford
  • Publication number: 20210366714
    Abstract: Devices are made by self-aligned quad pitch patterning (SAQP) and methods for making devices by self-aligned quad pitch patterning (SAQP) use a single spacer in the process. An intermediate process step called self-aligned double patterning (SADP) is used to double the pitch following the spacer deposition. A pattern is formed on a substrate, the pattern having ultra-fine resolutions by repeating the SADP step twice for pitch quadrupling and introducing a reversal layer to form a fine trench pattern and hole pattern. An initial pattern is obtained by the X-Y double line exposures. Reverse material is applied on the initial pattern and subsequent etching process converts each initial trench pattern to a line. The pattern designs or pattern layouts have improved LER/LWR (line edge roughness and line width roughness respectively) for below 12 nm lines and trenches in order to create self-aligned cross pitch quad trenches.
    Type: Application
    Filed: May 20, 2021
    Publication date: November 25, 2021
    Applicant: Tokyo Electron Limited
    Inventors: Daniel FULFORD, Anton J. DEVILLIERS
  • Publication number: 20210366713
    Abstract: Devices are made by self-aligned quad pitch patterning (SAQP), staircase patterning and double staircase patterning. Methods for making devices by self-aligned quad pitch patterning (SAQP) use a single spacer in the process. Methods for making devices by staircase patterning and double staircase patterning do not use a spacer. An intermediate process step called self-aligned double patterning (SADP) is used to double the pitch following the spacer deposition. A pattern is formed on a substrate, the pattern having ultra-fine resolutions by repeating the SADP step twice for pitch quadrupling and introducing a reversal layer to form a fine trench pattern and hole pattern. The pattern designs or pattern layouts have improved LER/LWR (line edge roughness and line width roughness respectively) for below 12 nm lines and trenches in order to create self-aligned cross pitch quad trenches.
    Type: Application
    Filed: May 20, 2021
    Publication date: November 25, 2021
    Applicant: Tokyo Electron Limited
    Inventors: Daniel FULFORD, Anton J. DEVILLIERS
  • Publication number: 20210366792
    Abstract: A method of microfabrication is provided. A substrate having a working surface and having a backside surface opposite to the working surface is received. The substrate has an initial wafer bow resulting from one or more micro fabrication processing steps executed on the working surface of the substrate. The initial wafer bow of the substrate is measured and the initial wafer bow is used to generate an initial wafer bow value that identifies a degree of first order wafer bowing of the substrate. A correction film recipe based on the initial wafer bow value is identified. The correction film recipe specifies parameters of a correction film to be deposited on the backside surface of the substrate to change wafer bow of the substrate from the initial wafer bow to a modified wafer bow. The correction film on the backside surface of the substrate according to the correction film recipe is deposited.
    Type: Application
    Filed: March 11, 2021
    Publication date: November 25, 2021
    Applicant: Tokyo Electron Limited
    Inventors: Daniel FULFORD, Anton J. DEVILLIERS
  • Publication number: 20210339276
    Abstract: Light can be used to monitor coating a liquid on a substrate. By directing the light to a spot on the substrate, when the liquid passes through the spot, some light will be reflected, while some light will be scattered. Monitoring this behavior can indicate whether a substrate has been successfully coated with the liquid, as well as identifying defects. Further, coating times can be monitored to make process adjustments.
    Type: Application
    Filed: March 9, 2021
    Publication date: November 4, 2021
    Applicant: Tokyo Electron Limited
    Inventors: Mirko VUKOVIC, Daniel FULFORD, Anton J. DEVILLIERS
  • Publication number: 20210294148
    Abstract: A method of planarizing a substrate includes receiving a substrate having structures formed on a target layer on a working surface of a substrate where the structures and the target layer are formed of different materials. Depositing a grafting material, including a solubility-shifting agent, on the substrate, the grafting material adhering to uncovered surfaces of the target layer without adhering to surfaces of the structures, depositing a fill material on the substrate that covers the grafting material, causing the solubility-shifting agent to diffuse a predetermined distance into the fill material, where the solubility-shifting agent causes the fill material to become insoluble to a predetermined solvent, and using the predetermined solvent to remove soluble portions of the fill material where the remaining portions of the fill material form a surface parallel to the working surface of the substrate.
    Type: Application
    Filed: February 23, 2021
    Publication date: September 23, 2021
    Inventors: Jodi Grzeskowiak, Daniel Fulford, Robert Brandt
  • Publication number: 20210088904
    Abstract: A method of forming a pattern on a substrate is provided. The method includes forming a first layer on an underlying layer of the substrate, where the first layer is patterned to have a first structure. The method also includes depositing a grafting material on side surfaces of the first structure, where the grafting material includes a solubility-shifting material. The method further includes diffusing the solubility-shifting material by a predetermined distance into a neighboring structure that abuts the solubility-shifting material, where the solubility-shifting material changes solubility of the neighboring structure in a developer, and removing soluble portions of the neighboring structure using the developer to form a second structure.
    Type: Application
    Filed: September 17, 2020
    Publication date: March 25, 2021
    Applicant: Tokyo Electron Limited
    Inventors: Anton J. DEVILLIERS, Jodi GRZESKOWIAK, Daniel FULFORD, Richard A. FARRELL, Jeffrey SMITH
  • Patent number: 10923363
    Abstract: Techniques herein include a method of patterning semiconductor wafers with improved line edge roughness (LER) and/or line width roughness (LWR), including lines below 12 nm in width. An initial bilayer mandrel is formed. The top layer is trimmed to a particular ratio. A reversal material protects uncovered portions of the lower layer, while a central portion is removed, resulting in two mandrels, each one fifth the initial mandrel width. The resulting mandrels are transferred into two underlying layers to form second bilayer mandrels. Sidewall spacers are formed on the second bilayer mandrels, and a fill material can fill remaining spaces. A planarization step can planarize the substrate to a bottom layer of the second bilayer mandrels, which results in a multi-line layer having square profile lines at 1:1 spacing ratio without spacer rounding.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: February 16, 2021
    Assignee: Tokyo Electron Limited
    Inventors: Sanjana Das, Anton J. deVilliers, Daniel Fulford
  • Publication number: 20210035815
    Abstract: Techniques herein include a method of patterning semiconductor wafers with improved line edge roughness (LER) and/or line width roughness (LWR), including lines below 12 nm in width. An initial bilayer mandrel is formed. The top layer is trimmed to a particular ratio. A reversal material protects uncovered portions of the lower layer, while a central portion is removed, resulting in two mandrels, each one fifth the initial mandrel width. The resulting mandrels are transferred into two underlying layers to form second bilayer mandrels. Sidewall spacers are formed on the second bilayer mandrels, and a fill material can fill remaining spaces. A planarization step can planarize the substrate to a bottom layer of the second bilayer mandrels, which results in a multi-line layer having square profile lines at 1:1 spacing ratio without spacer rounding.
    Type: Application
    Filed: August 2, 2019
    Publication date: February 4, 2021
    Inventors: Sanjana Das, Anton J. deVilliers, Daniel Fulford