Patents by Inventor Daniel G. Anderson

Daniel G. Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11933221
    Abstract: A gas turbine engine including a core having a compressor section fluidly connected to a combustor via a primary flowpath and a turbine section connected to the combustor via the core flow path. An assembly is disposed within the gas turbine engine and includes a first part connected to a second part via a radial stack joint. The first part includes a radially inward facing surface contacting a corresponding radially outward facing surface of the second part. A fastener protrudes through the first part and the second part and is configured to maintain the relative positions of the first part and the second part. A channel is disposed on at least one of the radially inward facing surfaces and is positioned between the fastener and a circumferential edge of the first part. The channel is connected to at least one cooling air source.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: March 19, 2024
    Assignee: RTX Corporation
    Inventors: Corey D. Anderson, Edward Boucher, Rebecca R. Dunnigan, Nicholas Broulidakis, Matthew Murakami, Daniel R. Brandt, Konrad Kuc, Victoria M. Imlach, Sushruth G. Kamath, Manuel A. Casares Rivas, Eric G. Leamon, Adam Castles, Edmond Cheung, Kyra A. Thole-Wilson, Javier Nebero Johnson
  • Patent number: 11845933
    Abstract: The disclosure relates to compositions comprising and methods for chemical modification of single guide RNA (sgRNA), tracrRNA and/or crRNA used individually or in combination with one another or Cas system components. Compositions comprising modified ribonucleic acids have been designed with chemical modification for even higher efficiency as unmodified native strand of sgRNA. Administration of modified ribonucleic acids will allow decreased immune response when administered to a subject, increased stability, increased editing efficiency and facilitated in vivo delivery of sgRNA via various delivery platforms. The disclosure also relates to methods of decreasing off-target effect of CRISPR and a CRISPR complex.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: December 19, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Hao Yin, Daniel G. Anderson, Robert S. Langer
  • Patent number: 11845950
    Abstract: Methods and constructs for engineering circular RNA are disclosed. In some embodiments, the methods and constructs comprise a vector for making circular RNA, the vector comprising the following elements operably connected to each other and arranged in the following sequence: a.) a 5? homology arm, b.) a 3? group I intron fragment containing a 3? splice site dinucleotide, c.) optionally, a 5? spacer sequence, d.) a protein coding or noncoding region, e.) optionally, a 3? spacer sequence, f) a 5? Group I intron fragment containing a 5? splice site dinucleotide, and g.) a 3? homology arm, the vector allowing production of a circular RNA that is translatable or biologically active inside eukaryotic cells. Methods for purifying the circular RNA produced by the vector and the use of nucleoside modifications in circular RNA produced by the vector are also disclosed.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: December 19, 2023
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Daniel G. Anderson, Robert Alexander Wesselhoeft, Piotr S. Kowalski
  • Patent number: 11802144
    Abstract: Circular RNA and transfer vehicles, along with related compositions and methods are described herein. In some embodiments, the inventive circular RNA comprises group I intron fragments, spacers, an IRES, duplex forming regions, and an expression sequence. In some embodiments, the expression sequence encodes a chimeric antigen receptor (CAR). In some embodiments, circular RNA of the invention has improved expression, functional stability, immunogenicity, ease of manufacturing, and/or half-life when compared to linear RNA. In some embodiments, inventive methods and constructs result in improved circularization efficiency, splicing efficiency, and/or purity when compared to existing RNA circularization approaches.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: October 31, 2023
    Assignee: Orna Therapeutics, Inc.
    Inventors: Robert Alexander Wesselhoeft, Daniel G. Anderson, Shinichiro Fuse, Brian Goodman, Allen T. Horhota, Raffaella Squilloni
  • Publication number: 20230331806
    Abstract: Circular RNA and transfer vehicles, along with related compositions and methods are described herein. In some embodiments, the inventive circular RNA comprises group I intron fragments, spacers, an IRES, duplex forming regions, and an expression sequence. In some embodiments, the expression sequence encodes a chimeric antigen receptor (CAR). In some embodiments, circular RNA of the invention has improved expression, functional stability, immunogenicity, ease of manufacturing, and/or half-life when compared to linear RNA. In some embodiments, inventive methods and constructs result in improved circularization efficiency, splicing efficiency, and/or purity when compared to existing RNA circularization approaches.
    Type: Application
    Filed: December 21, 2022
    Publication date: October 19, 2023
    Inventors: Robert Alexander Wesselhoeft, Daniel G. Anderson, Shinichiro Fuse, Brian Goodman, Allen T. Horhota, Raffaella Squilloni
  • Publication number: 20230321230
    Abstract: Provided herein are, in various embodiments, methods and compositions comprising polynucleotides (e.g., mRNA) for eliciting an immune response. In certain embodiments, the disclosure provides for methods and compositions for enhancing efficacy of infectious disease treatment (e.g., mRNA vaccines). In still further embodiments, the disclosure provides methods and compositions for enhancing one or more vaccines, such as SARS-CoV-2 mRNA vaccines.
    Type: Application
    Filed: March 24, 2023
    Publication date: October 12, 2023
    Inventors: Bowen Li, Allen Jiang, Robert S. Langer, Daniel G. Anderson
  • Patent number: 11768262
    Abstract: A cross-modal interface includes a multi-modal sensor configured to concurrently receive multiple input signals with each input signal being provided from a different imaging modality and in response thereto providing a single cross-modal output signal to processing circuitry which processes the single cross-modal output signal provided thereto and generates an output comprising information obtained or otherwise derived from each of or a combination of the different imaging modalities.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: September 26, 2023
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Virginia Spanoudaki, Aviad Hai, Alan Pradip Jasanoff, Daniel G. Anderson, Robert S. Langer
  • Publication number: 20230130084
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for the encapsulation and transplantation of cells. Also disclosed are high throughput methods for the characterizing the biocompatibility and physiochemical properties of modified alginate polymers.
    Type: Application
    Filed: May 20, 2022
    Publication date: April 27, 2023
    Inventors: Arturo J. Vegas, Minglin Ma, Kaitlin M. Bratlie, Daniel G. Anderson, Robert S. Langer
  • Patent number: 11603396
    Abstract: Circular RNA and transfer vehicles, along with related compositions and methods are described herein. In some embodiments, the inventive circular RNA comprises group I intron fragments, spacers, an IRES, duplex forming regions, and an expression sequence. In some embodiments, the expression sequence encodes a chimeric antigen receptor (CAR). In some embodiments, circular RNA of the invention has improved expression, functional stability, immunogenicity, ease of manufacturing, and/or half-life when compared to linear RNA. In some embodiments, inventive methods and constructs result in improved circularization efficiency, splicing efficiency, and/or purity when compared to existing RNA circularization approaches.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: March 14, 2023
    Assignees: Orna Therapeutics, Inc., Massachusetts Institute of Technology
    Inventors: Robert Alexander Wesselhoeft, Daniel G. Anderson, Shinichiro Fuse, Brian Goodman, Allen T. Horhota, Raffaella Squilloni
  • Publication number: 20230050306
    Abstract: Methods and constructs for engineering circular RNA are disclosed. In some embodiments, the methods and constructs comprise a vector for making circular RNA, the vector comprising the following elements operably connected to each other and arranged in the following sequence: a.) a 5? homology arm, b.) a 3? group I intron fragment containing a 3? splice site dinucleotide, c.) optionally, a 5? spacer sequence, d.) a protein coding or noncoding region, e.) optionally, a 3? spacer sequence, f) a 5? Group I intron fragment containing a 5? splice site dinucleotide, and g.) a 3? homology arm, the vector allowing production of a circular RNA that is translatable or biologically active inside eukaryotic cells. Methods for purifying the circular RNA produced by the vector and the use of nucleoside modifications in circular RNA produced by the vector are also disclosed.
    Type: Application
    Filed: August 23, 2022
    Publication date: February 16, 2023
    Inventors: Daniel G. Anderson, Robert Alexander Wesselhoeft, Piotr S. Kowalski
  • Patent number: 11446239
    Abstract: Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: September 20, 2022
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup, Arturo Jose Vegas
  • Patent number: 11447796
    Abstract: Methods and constructs for engineering circular RNA are disclosed. In some embodiments, the methods and constructs comprise a vector for making circular RNA, the vector comprising the following elements operably connected to each other and arranged in the following sequence: a.) a 5? homology arm, b.) a 3? group I intron fragment containing a 3? splice site dinucleotide, c.) optionally, a 5? spacer sequence, d.) a protein coding or noncoding region, e.) optionally, a 3? spacer sequence, f) a 5? Group I intron fragment containing a 5? splice site dinucleotide, and g.) a 3? homology arm, the vector allowing production of a circular RNA that is translatable or biologically active inside eukaryotic cells. Methods for purifying the circular RNA produced by the vector and the use of nucleoside modifications in circular RNA produced by the vector are also disclosed.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: September 20, 2022
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Daniel G. Anderson, Robert Alexander Wesselhoeft, Piotr S. Kowalski
  • Publication number: 20220177540
    Abstract: Circular RNA and transfer vehicles, along with related compositions and methods are described herein. In some embodiments, the inventive circular RNA comprises group I intron fragments, spacers, an IRES, duplex forming regions, and an expression sequence. In some embodiments, the expression sequence encodes a chimeric antigen receptor (CAR). In some embodiments, circular RNA of the invention has improved expression, functional stability, immunogenicity, ease of manufacturing, and/or half-life when compared to linear RNA. In some embodiments, inventive methods and constructs result in improved circularization efficiency, splicing efficiency, and/or purity when compared to existing RNA circularization approaches.
    Type: Application
    Filed: December 10, 2021
    Publication date: June 9, 2022
    Inventors: Alexander Wesselhoeft, Daniel G. Anderson, Shinichiro Fuse, Brian Goodman, Allen T. Horhota, Raffaella Squilloni
  • Patent number: 11352640
    Abstract: Methods and constructs for engineering circular RNA are disclosed. In some embodiments, the methods and constructs comprise a vector for making circular RNA, the vector comprising the following elements operably connected to each other and arranged in the following sequence: a.) a 5? homology arm, b.) a 3? group I intron fragment containing a 3? splice site dinucleotide, c.) optionally, a 5? spacer sequence, d.) a protein coding or noncoding region, e.) optionally, a 3? spacer sequence, f.) a 5? Group I intron fragment containing a 5? splice site dinucleotide, and g.) a 3? homology arm, the vector allowing production of a circular RNA that is translatable or biologically active inside eukaryotic cells. Methods for purifying the circular RNA produced by the vector and the use of nucleoside modifications in circular RNA produced by the vector are also disclosed.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: June 7, 2022
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Daniel G. Anderson, Robert Alexander Wesselhoeft, Piotr S. Kowalski
  • Patent number: 11352641
    Abstract: Methods and constructs for engineering circular RNA are disclosed. In some embodiments, the methods and constructs comprise a vector for making circular RNA, the vector comprising the following elements operably connected to each other and arranged in the following sequence: a.) a 5? homology arm, b.) a 3? group I intron fragment containing a 3? splice site dinucleotide, c.) optionally, a 5? spacer sequence, d.) a protein coding or noncoding region, e.) optionally, a 3? spacer sequence, f) a 5? Group I intron fragment containing a 5? splice site dinucleotide, and g.) a 3? homology arm, the vector allowing production of a circular RNA that is translatable or biologically active inside eukaryotic cells. Methods for purifying the circular RNA produced by the vector and the use of nucleoside modifications in circular RNA produced by the vector are also disclosed.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: June 7, 2022
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Daniel G. Anderson, Robert Alexander Wesselhoeft, Piotr S. Kowalski
  • Patent number: 11337930
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for the encapsulation and transplantation of cells. Also disclosed are high throughput methods for the characterizing the biocompatibility and physiochemical properties of modified alginate polymers.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: May 24, 2022
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Arturo J. Vegas, Minglin Ma, Kaitlin M. Bratlie, Daniel G. Anderson, Robert S. Langer
  • Patent number: 11318231
    Abstract: Neurological implants whose surfaces have been chemically and covalently modified to impart beneficial properties to the neurological implants are described. The neurological implants possess improved biocompatibility compared to a corresponding neurological implant that lacks the chemical modification. Following implantation in a subject, the surface-modified neurological implants induce a lower-foreign body response, compared to a corresponding unmodified product.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: May 3, 2022
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, SEATTLE CHILDREN'S HOSPITAL
    Inventors: Omid Veiseh, Robert S. Langer, Daniel G. Anderson, William Shain, Brian W. Hanak, Samuel R. Browd, Robert F. Hevner
  • Patent number: 11279928
    Abstract: The disclosure relates to compositions comprising and methods for chemical modification of single guide RNA (sgRNA), tracrRNA and/or crRNA used individually or in combination with one another or Cas system components. Compositions comprising modified ribonucleic acids have been designed with chemical modification for even higher efficiency as unmodified native strand of sgRNA. Administration of modified ribonucleic acids will allow decreased immune response when administered to a subject, increased stability, increased editing efficiency and facilitated in vivo delivery of sgRNA via various delivery platforms. The disclosure also relates to methods of decreasing off-target effect of CRISPR and a CRISPR complex.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: March 22, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Hao Yin, Daniel G. Anderson, Robert Samuel Langer
  • Patent number: 11266606
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: March 8, 2022
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Arturo J. Vegas, Joshua C. Doloff, Omid Veiseh, Minglin Ma, Robert S. Langer, Daniel G. Anderson
  • Publication number: 20220031913
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.
    Type: Application
    Filed: July 15, 2021
    Publication date: February 3, 2022
    Inventors: Arturo Vegas, Joshua C. Doloff, Omid Veiseh, Minglin Ma, Robert S. Langer, Daniel G. Anderson