Patents by Inventor Daniel G. Casey

Daniel G. Casey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8494772
    Abstract: Methods for accurately and conveniently calculating the inventory of hydrogen storage in a stationary storage vessel using the external ambient temperature and the internal pressure are disclosed in the present invention. To account for the delay in the heat transfer from the ambient air to the storage vessel and then to the hydrogen gas a first order filter can be used on the external ambient temperature. Following the application of the first order filter on the external ambient temperature, an empirical equation is used to calculate the mass of hydrogen in the stationary storage vessel.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: July 23, 2013
    Assignee: Texaco Inc.
    Inventors: Daniel G. Casey, Brandon W. Janak, Paul D. Burger
  • Patent number: 8426071
    Abstract: An apparatus for separating liquid from a gas stream. The apparatus includes an elongated housing having a cylindrical inner surface and a gas stream inlet that is tangential to the side wall of the housing so as to cause the entering gas stream to swirl within the housing. A gas stream outlet is located at the top of the housing and a liquid outlet at the bottom. The gas stream outlet can include an elongated tubular member that extends into the housing and has an opening that is located below the housing gas stream inlet. Liquid components of the gas stream separate from the stream under the influence of centrifugal forces that are created by the swirling flow path of the stream within the housing. A liquid outlet and liquid outlet valve are provided for maintaining a minimum level of liquid within the housing so as to maintain a liquid seal within the housing. A level indicator may optionally be provided to monitor the liquid level within the housing.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: April 23, 2013
    Assignee: Texaco Inc
    Inventors: William Spencer Wheat, David Wayne Harrison, Sr., Daniel G. Casey, Kerry Kennedy Spilker
  • Patent number: 8241374
    Abstract: The present invention discloses a fluidized bed system for the single step reforming technology for the production of hydrogen. Single step reforming combines the steam methane reforming, water gas shift, and carbon dioxide removal in a single step process of hydrogen generation. In the present invention, to address the heat transfer and the replenishment issues associated with single step reforming, the sorbent particles are fluidized. This fluidization allows the sorbent particles to be regenerated and consequently allows the optimal operating conditions for single step reforming to be maintained.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: August 14, 2012
    Assignee: Texaco Inc.
    Inventors: Farshad Bavarian, James F. Stevens, Balaji Krishnamurty, Yunquan Liu, Curtis L. Krause, Lixin You, Daniel G. Casey
  • Patent number: 8119299
    Abstract: A coolant subsystem for use in a fuel processor and a method for its operation are disclosed. In accordance with a first aspect, the coolant subsystem is separate from the feed to the processor reactor and is capable of circulating a coolant through the processor reactor. In accordance with a second aspect, the constituent elements of the fuel processor are housed in a cabinet, and the coolant subsystem is capable of cooling both the processor reactor and the interior of the cabinet. In various alternatives, the fuel processor can be employed to reform a fuel for a fuel cell power plant and/or may be used to provide thermal control for unrelated mechanical systems.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: February 21, 2012
    Assignee: Texaco Inc.
    Inventors: Hongqiao (Bruce) Sun, W. Spencer Wheat, Vesna R. Mirkovic, Daniel G. Casey
  • Patent number: 8061392
    Abstract: In the present invention methods for storing gaseous hydrogen employing an ionic liquid are disclosed. The ionic liquid is used to displace the volume in the storage tanks. By displacing the volume in the storage tanks with the ionic liquid, the storage pressure can remain constant and the “stranded” gas can be eliminated. This constant pressure will also allow for a reduction in the number of storage tanks needed to provide the required inventory at hydrogen fueling stations. In addition, this constant pressure will provide a complete and fast fill to the vehicle.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: November 22, 2011
    Assignee: Texaco Inc.
    Inventor: Daniel G. Casey
  • Patent number: 7857875
    Abstract: A method for start-up and shut down of a fuel processor including an autothermal reformer employing a non-pyrophoric shift catalyst is disclosed. Also disclosed are a computer programmed to start-up or shut down a fuel processor including an autothermal reformer employing a non-pyrophoric shift catalyst or a program storage medium encoded with instruction that, when executed by a computer, start-up or shut down a fuel processor including an autothermal reformer employing a non-pyrophoric shift catalyst.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: December 28, 2010
    Assignee: Texaco Inc.
    Inventors: W. Spencer Wheat, Vesna R. Mirkovic, Kevin H. Nguyen, Curtis L. Krause, James F. Stevens, Daniel G. Casey
  • Patent number: 7785539
    Abstract: A method and apparatus for use in generating hydrogen are disclosed. The apparatus includes a fuel processor capable of producing a reformate from a fuel; a hydrogen purifier capable of generating a purified hydrogen gas stream from the reformate; a compressor capable of providing the reformate from the fuel processor to the pressure swing adsorption unit at a desired pressure; and a control system capable of integrating and controlling the operation of the fuel processor, the pressure swing adsorption unit, and the compressor. In another aspect, the invention includes a method for controlling the operation of a purified hydrogen generator, the method comprising: controlling the operation of a hydrogen generator; controlling the operation of a hydrogen purifier; and synchronizing the controlled operation of the hydrogen generator with the controlled operation of the hydrogen purifier.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: August 31, 2010
    Assignee: Texaco Inc.
    Inventors: Vesna R. Mirkovic, Hongqiao Sun, W. Spencer Wheat, Daniel G. Casey, Bhaskar Balasubramanian
  • Publication number: 20100154924
    Abstract: In the present invention methods for storing gaseous hydrogen employing an ionic liquid are disclosed. The ionic liquid is used to displace the volume in the storage tanks. By displacing the volume in the storage tanks with the ionic liquid, the storage pressure can remain constant and the “stranded” gas can be eliminated. This constant pressure will also allow for a reduction in the number of storage tanks needed to provide the required inventory at hydrogen fueling stations. In addition, this constant pressure will provide a complete and fast fill to the vehicle.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Applicant: Texaco Inc.
    Inventor: Daniel G. Casey
  • Patent number: 7645307
    Abstract: A method and apparatus for use in controlling the reaction temperature of a fuel processor are disclosed. The apparatus includes a fuel processor reactor, the reactor including a water gas shift reaction section; a temperature sensor disposed within the reaction section; a coolant flow line through the reaction section; and an automated control system. The automated control system controls the reaction temperature by determining a first component for a setting adjustment for the actuator from the measured temperature and a setpoint for the measured temperature; determining a second component for the setting adjustment from a hydrogen production rate for the fuel processor; and determining the setting adjustment from the first and second components.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: January 12, 2010
    Assignee: Texaco Inc.
    Inventors: Hongqiao Sun, Daniel G. Casey, Vesna R. Mirkovic, Bhaskar Balasubramanian, W. Spencer Wheat
  • Patent number: 7593788
    Abstract: A method and apparatus for use in regenerating a reactor shift bed catalyst are disclosed. The method comprises monitoring the saturation level of a reactor shift bed catalyst in a reformer; automatically detecting that the reactor shift bed catalyst has entered a saturated state; and automatically regenerating the reactor shift bed catalyst in response to automatically detecting the saturated state. The apparatus may be, in various aspects, a program storage method encoded with instructions that, when executed by a computing device, performs such a method; a computing apparatus programmed to perform such a method, or a control system performing such a method.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: September 22, 2009
    Assignee: Texaco Inc.
    Inventors: Hongqiao Sun, Daniel G. Casey, Vesna R. Mirkovic, Bhaskar Balasubramanian, W. Spencer Wheat, Curtis L. Krause
  • Patent number: 7572304
    Abstract: An apparatus and method for the preferential oxidation of carbon monoxide in a hydrogen-rich fluid. The apparatus utilizes one or more reactors that are dimensioned to optimize the exothermic oxidation reaction and the transfer of heat to and from the catalyst bed. A reactor of the apparatus has an elongated cylindrical catalyst bed and heat transfer means adjacent the catalyst bed. The heat transfer means is suitable for pre-heating the catalyst bed during start-up operations and for removing the heat from the catalyst bed during the oxidation reaction. One or more reactors of different dimensions may be utilized depending upon the pressure of the hydrogen-rich fluid to be directed into the apparatus and the pressure requirements for the carbon monoxide-depleted fluid exiting the apparatus. For instance, in low pressure operations where it may be desirable to minimize the pressure drop across the apparatus, two or more reactors having relatively smaller dimensions can be utilized.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: August 11, 2009
    Assignee: Texaco Inc.
    Inventors: W. Spencer Wheat, Daniel G. Casey, Curtis L. Krause, Marshall D. Wier, David W. Harrison, Sr.
  • Publication number: 20080288208
    Abstract: Methods for accurately and conveniently calculating the inventory of hydrogen storage in a stationary storage vessel using the external ambient temperature and the internal pressure are disclosed in the present invention. To account for the delay in the heat transfer from the ambient air to the storage vessel and then to the hydrogen gas a first order filter can be used on the external ambient temperature. Following the application of the first order filter on the external ambient temperature, an empirical equation is used to calculate the mass of hydrogen in the stationary storage vessel.
    Type: Application
    Filed: May 17, 2007
    Publication date: November 20, 2008
    Applicant: Texaco Inc.
    Inventors: Daniel G. Casey, Brandon W. Janak, Paul D. Burger
  • Publication number: 20080141584
    Abstract: Methods of using a catalyst preburner upstream of a catalyst burner, such as an anode tailgas oxidizer (ATO), in fuel processing applications. The methods prepare a hydrogen containing gas mixture which can be effectively combusted in a single ATO. The catalyst preburner will convert raw fuels into a gas mixture including hydrogen. This hydrogen containing gas mixture then mixes with the required air flow and anode tailgas and off-gas from a pressure swing adsorption unit before being introduced into the catalyst burner. The methods address the start-ups needs of an ATO as well as the requirement that an ATO be able to burn both liquid and gas fuels in a single unit.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 19, 2008
    Applicant: Texaco Inc.
    Inventors: Lixin You, Daniel G. Casey, Kevin H. Nguyen
  • Publication number: 20080145309
    Abstract: The present invention discloses a fluidized bed system for the single step reforming technology for the production of hydrogen. Single step reforming combines the steam methane reforming, water gas shift, and carbon dioxide removal in a single step process of hydrogen generation. In the present invention, to address the heat transfer and the replenishment issues associated with single step reforming, the sorbent particles are fluidized. This fluidization allows the sorbent particles to be regenerated and consequently allows the optimal operating conditions for single step reforming to be maintained.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Applicant: Texaco Inc.
    Inventors: Farshad Bavarian, James F. Stevens, Balaji Krishnamurty, Yunquan Liu, Curtis L. Krause, Lixin You, Daniel G. Casey
  • Publication number: 20080127554
    Abstract: An apparatus and method for producing a hydrogen-enriched reformate. The apparatus includes a fuel processor for converting a fuel to a reformate having fluctuations in pressure and or flow rate, means for reducing the fluctuations, a compression unit for compressing the reformate and one or more of a purification unit and a storage unit downstream of a compression unit. Means for reducing the fluctuations in the reformate can include one or more of a buffer and a conduit for providing a controlled flow of a supplemental fluid to an inlet of the compression unit. The supplemental fluid can include the compressed reformate, a hydrogen-enriched reformate, and mixtures thereof. The apparatus can include means for regulating power to the compression unit that can incrementally increase power to the compression unit particularly during start up. The purification unit can include one or more of a hydrogen selective membrane and a pressure swing adsorption unit. Methods for producing hydrogen are also disclosed.
    Type: Application
    Filed: February 7, 2008
    Publication date: June 5, 2008
    Applicant: Texaco Inc.
    Inventors: Dean A. Kenefake, W. Spencer Wheat, Hongqiao Sun, Bhaskar Balasubramanian, Vesna R. Mirkovic, Daniel G. Casey
  • Patent number: 7354464
    Abstract: An apparatus and method for producing a hydrogen-enriched reformate. The apparatus includes a fuel processor for converting a fuel to a reformate having fluctuations in pressure and or flow rate, means for reducing the fluctuations, a compression unit for compressing the reformate and one or more of a purification unit and a storage unit downstream of a compression unit. Means for reducing the fluctuations in the reformate can include one or more of a buffer and a conduit for providing a controlled flow of a supplemental fluid to an inlet of the compression unit. The supplemental fluid can include the compressed reformate, a hydrogen-enriched reformate, and mixtures thereof. The apparatus can include means for regulating power to the compression unit that can incrementally increase power to the compression unit particularly during start up. The purification unit can include one or more of a hydrogen selective membrane and a pressure swing adsorption unit. Methods for producing hydrogen are also disclosed.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: April 8, 2008
    Assignee: Texaco Inc.
    Inventors: Dean A. Kenefake, W. Spencer Wheat, Hongqiao Sun, Bhaskar Balasubramanian, Vesna R. Mirkovic, Daniel G. Casey
  • Patent number: 7081144
    Abstract: A method for start-up and shut down of a fuel processor including an autothermal reformer employing a non-pyrophoric shift catalyst is disclosed. Also disclosed are a computer programmed to start-up or shut down a fuel processor including an autothermal reformer employing a non-pyrophoric shift catalyst or a program storage medium encoded with instruction that, when executed by a computer, start-up or shut down a fuel processor including an autothermal reformer employing a non-pyrophoric shift catalyst.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: July 25, 2006
    Assignee: Texaco Inc.
    Inventors: W. Spencer Wheat, Vesna R. Mirkovic, Kevin H. Nguyen, Curtis L. Krause, James F. Stevens, Daniel G. Casey
  • Publication number: 20040197622
    Abstract: An apparatus for separating liquid from a gas stream. The apparatus includes an elongated housing having a cylindrical inner surface and a gas stream inlet that is tangential to the side wall of the housing so as to cause the entering gas stream to swirl within the housing. A gas stream outlet is located at the top of the housing and a liquid outlet at the bottom. The gas stream outlet can include an elongated tubular member that extends into the housing and has an opening that is located below the housing gas stream inlet. Liquid components of the gas stream separate from the stream under the influence of centrifugal forces that are created by the swirling flow path of the stream within the housing. A liquid outlet and liquid outlet valve are provided for maintaining a minimum level of liquid within the housing so as to maintain a liquid seal within the housing. A level indicator may optionally be provided to monitor the liquid level within the housing.
    Type: Application
    Filed: April 4, 2003
    Publication date: October 7, 2004
    Applicant: Texaco Inc.
    Inventors: William Spencer Wheat, David Wayne Harrison, Daniel G. Casey, Kerry Kennedy Spilker
  • Publication number: 20040194383
    Abstract: A method for start-up and shut down of a fuel processor including an autothermal reformer employing a non-pyrophoric shift catalyst is disclosed. Also disclosed are a computer programmed to start-up or shut down a fuel processor including an autothermal reformer employing a non-pyrophoric shift catalyst or a program storage medium encoded with instruction that, when executed by a computer, start-up or shut down a fuel processor including an autothermal reformer employing a non-pyrophoric shift catalyst.
    Type: Application
    Filed: April 4, 2003
    Publication date: October 7, 2004
    Inventors: W. Spencer Wheat, Vesna R. Mirkovic, Kevin H. Nguyen, Curtis L. Krause, James F. Stevens, Daniel G. Casey
  • Patent number: 5227569
    Abstract: Normal olefins such as n-butenes can be converted to iso olefins such as isobutylene by skeletal isomerization over catalysts of boron-beta zeolites having pore sizes of at least about 5 Angstroms and containing boron in the framework structure thereof. The boron-beta zeoliteS have sufficient acidity to catalyze the skeletal isomerization of normal olefinsto iso-olefins. The catalysts can be used to produce iso-olefins for reaction with alcohols in integrated processes to produce alkyl tertiary alkyl ethers such as MTBE.
    Type: Grant
    Filed: August 19, 1991
    Date of Patent: July 13, 1993
    Assignee: Texaco Inc.
    Inventors: Chi-Lin O'Young, John Hazen, Daniel G. Casey