Patents by Inventor Daniel G. Dickson
Daniel G. Dickson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8574483Abstract: A method of deforming a component includes the step of forming the component from thermosetting, elastomeric microcellular polyurethane. The method further includes the step of heating at least a first portion of the component to a first temperature. The method further includes the step of compressing the first portion of the component while maintaining the first portion at the first temperature and while maintaining the second portion of the component at an undeformable state. The method of deforming the component shapes the first portion of the component. Preferably the method shapes the first portion of the component into a thin and/or complexly shape. The method of deforming the component also increases the first portion of the component relative to the second portion of the component, i.e. to densifying the component such that the component has varying density.Type: GrantFiled: July 17, 2006Date of Patent: November 5, 2013Assignee: BASF CorporationInventors: Daniel G. Dickson, Gary M. Lawrence
-
Patent number: 8333269Abstract: An insulator for a wheel suspension system of a vehicle is formed of an elastomeric material. The elastomeric material defines a channel that provides increased flexibility to the insulator and defines an increased density about the channel that increases the durability of the insulator. The suspension system includes a support structure adapted to be mounted to the vehicle, a piston rod disposed within the aperture and displaceable relative to the support structure along a line of travel, and a plate mounted to the piston rod. The insulator is compressibly disposed between the support structure and the plate. The exterior channel increases the flexibility of the insulator to distribute localized stress on the insulator by the support structure and the plate. The increased density about the channel increases the durability of the insulator about the channel when the support structure and the plate exert a compressive force on the insulator.Type: GrantFiled: July 17, 2007Date of Patent: December 18, 2012Assignee: BASF CorporationInventors: Daniel G. Dickson, Anand Huprikar
-
Patent number: 8276894Abstract: A wheel suspension system for a vehicle includes a mounting base and a striking base spaced from each other and moveable relative to each other along an arced line of motion. An insulator is coupled to and extends from the mounting base. The insulator is formed of an elastomeric material for compression between the mounting base and the striking base when the striking base contacts the insulator during movement of the mounting base and the striking base relative to each other. The insulator is compressed along the arced line of motion between the mounting base and the striking base. The insulator includes an impact portion extending at an acute angle relative to the base plane for distributing compressive forces within the insulator as the insulator is compressed along the arced line of motion. The distribution of the compressive forces within the insulator increases the durability and reliability of the insulator.Type: GrantFiled: November 21, 2007Date of Patent: October 2, 2012Assignee: BASF CorporationInventor: Daniel G. Dickson
-
Publication number: 20090127759Abstract: A wheel suspension system for a vehicle includes a mounting base and a striking base spaced from each other and moveable relative to each other along an arced line of motion. An insulator is coupled to and extends from the mounting base. The insulator is formed of an elastomeric material for compression between the mounting base and the striking base when the striking base contacts the insulator during movement of the mounting base and the striking base relative to each other. The insulator is compressed along the arced line of motion between the mounting base and the striking base. The insulator includes an impact portion extending at an acute angle relative to the base plane for distributing compressive forces within the insulator as the insulator is compressed along the arced line of motion. The distribution of the compressive forces within the insulator increases the durability and reliability of the insulator.Type: ApplicationFiled: November 21, 2007Publication date: May 21, 2009Inventor: Daniel G. Dickson
-
Publication number: 20090127043Abstract: A wheel suspension system for a vehicle includes a mounting base and a striking base spaced from each other and moveable relative to each other along an arced line of motion. An insulator is coupled to and extends from the mounting base. The insulator is formed of an elastomeric material for compression between the mounting base and the striking base, i.e., the insulator is compressed along the arced line of motion between the mounting base and the striking base. The insulator includes a core portion extending along an axis and a ridge portion extending laterally from the core portion about the axis. The ridge portion extends circumferentially along the core portion at an acute angle relative to the base plane for guiding the compression of the insulator along the arced line of motion to uniformly distribute compressive forces within the insulator thereby increasing the durability and reliability of the insulator.Type: ApplicationFiled: November 21, 2007Publication date: May 21, 2009Inventor: Daniel G. Dickson
-
Patent number: 7416174Abstract: A mount assembly having a first carrier and a second carrier with each of the carriers being coupled to a frame of a vehicle. A first insulator abuts the first carrier and a second insulator abuts the second carrier for isolating movement of the frame relative to the vehicle body in a first direction. The first insulator is formed of microcellular polyurethane having a non-linear modulus of elasticity. An intermediate insulator is also mounted to the frame of the vehicle. The intermediate insulator is formed of rubber having a substantially linear modulus of elasticity. The intermediate insulator may include a structural insert encapsulated by the rubber. The intermediate insulator further isolates the movement of the frame relative to the vehicle body in the first direction to provide two different rates of elasticity. The intermediate insulator also isolates movement of the frame relative to the vehicle body in a second direction transverse to the first direction.Type: GrantFiled: May 12, 2005Date of Patent: August 26, 2008Assignee: Cooper Standard AutomotiveInventors: Daniel G. Dickson, Wesley C. Fog, Neil J. Oberley
-
Publication number: 20080012188Abstract: An insulator for a vehicle includes a first portion extending along an axis, an intermediate portion extending from the first portion along the axis, and a second portion extending from the intermediate portion along the axis. The first portion defines a first density and the second portion defines a second density different from the first density. Preferably, the first density is greater than the second density such that the second portion is more compressible than the first portion. The first portion, the intermediate portion, and the second portion are integrally formed of a common homogeneous microcellular polyurethane material for defining a one-piece insulator having different densities. In exemplary embodiments, the insulator is further defined as a jounce bumper or a coil spring isolator for disposition in a wheel suspension system, and a body insulator for disposition in a mount assembly of a vehicle.Type: ApplicationFiled: July 17, 2006Publication date: January 17, 2008Inventor: DANIEL G. DICKSON
-
Publication number: 20080012263Abstract: An insulator for a wheel suspension system of a vehicle is formed of an elastomeric material. The elastomeric material defines a channel that provides increased flexibility to the insulator and defines an increased density about the channel that increases the durability of the insulator. The suspension system includes a support structure adapted to be mounted to the vehicle, a piston rod disposed within the aperture and displaceable relative to the support structure along a line of travel, and a plate mounted to the piston rod. The insulator is compressibly disposed between the support structure and the plate. The exterior channel increases the flexibility of the insulator to distribute localized stress on the insulator by the support structure and the plate. The increased density about the channel increases the durability of the insulator about the channel when the support structure and the plate exert a compressive force on the insulator.Type: ApplicationFiled: July 17, 2007Publication date: January 17, 2008Inventors: Daniel G. Dickson, Anand Huprikar
-
Publication number: 20080012178Abstract: A method of deforming a component includes the step of forming the component from thermosetting, elastomeric microcellular polyurethane. The method further includes the step of heating at least a first portion of the component to a first temperature. The method further includes the step of compressing the first portion of the component while maintaining the first portion at the first temperature and while maintaining the second portion of the component at an undeformable state. The method of deforming the component shapes the first portion of the component. Preferably the method shapes the first portion of the component into a thin and/or complexly shape. The method of deforming the component also increases the first portion of the component relative to the second portion of the component, i.e. to densifying the component such that the component has varying density.Type: ApplicationFiled: July 17, 2006Publication date: January 17, 2008Inventors: Daniel G. Dickson, Gary M. Lawrence
-
Patent number: 7261365Abstract: A mount assembly having a first carrier and a first insulator disposed about the first carrier for isolating movement of a frame relative to a vehicle body in a first direction. A second carrier engages the first carrier for coupling the second carrier to the first carrier. A second insulator is disposed about the second carrier for further insolating the movement of the frame relative to the vehicle body in the first direction. A sleeve is disposed about both of the first and second carriers and is coupled to the first carrier. The sleeve is formed of an elastomeric material for isolating movement of the frame relative to the vehicle body in a second direction transverse to the first direction such that the isolation of movement about the first and second directions are accomplished by separate and independent components of the assembly.Type: GrantFiled: March 9, 2005Date of Patent: August 28, 2007Assignee: BASF CorporationInventors: Daniel G. Dickson, Anand Huprikar, Thomas E. St. Henry, William G. Dieter
-
Patent number: 7207684Abstract: An exterior mirror assembly for a vehicle having a housing rotatably mounted to a base between an operable position and a retracted position. A mirror is supported by the housing and is movable with the housing between the positions. A female detent is disposed on the shaft of the base. A male detent is disposed on the housing within the chamber and is aligned with the female detent when the housing is in the operable position and is misaligned with the female detent when the housing is in the retracted position. An elastomeric material is disposed within the chamber between the shaft and the housing and between the detents for isolating movement between the base and the housing and for resisting the rotational movement of the housing relative to the base.Type: GrantFiled: June 15, 2005Date of Patent: April 24, 2007Assignee: BASF CorporationInventors: Anand Huprikar, Daniel G. Dickson, Michael Kronell, Jr.
-
Patent number: 7163200Abstract: A mount assembly having a first carrier with a first insulator coupled to a first flange of the first carrier. The mount assembly also includes a second carrier and a second insulator coupled to a second flange of the second carrier. A first locking member, which is formed of a polymeric material, is connected to the first carrier. A second locking member, which is also formed of a polymeric material, is connected to the second carrier with the first locking member engaging the second locking member to retain the first carrier in telescoping relationship with the second carrier.Type: GrantFiled: March 9, 2005Date of Patent: January 16, 2007Assignee: BASF CorporationInventors: Daniel G. Dickson, Thomas E. St. Henry