Patents by Inventor Daniel Gariepy

Daniel Gariepy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11595125
    Abstract: There is herein provided a method for measuring the GOSNR that can be implemented using commercial-grade transceivers and which accounts for linear optical impairments (e.g. PMD, PDL and CD) and transceiver intrinsic impairments. The method may be implemented using an Optical Spectrum Analyzer (OSA) and either the system transceivers or other commercial-grade transceivers. The proposed measurement method is based on mixed optical and electronic technologies, using an OSA and a transceiver pair. By measuring a signal quality metric Qm and the OSNR under varied power and ASE noise conditions, a constant value RBW that relates the GOSNR to the signal quality metric Qm is derived. The GOSNR is then obtained from these results.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: February 28, 2023
    Assignee: EXFO Inc.
    Inventors: Gang He, Daniel Gariepy
  • Publication number: 20210273722
    Abstract: There is herein provided a method for measuring the GOSNR that can be implemented using commercial-grade transceivers and which accounts for linear optical impairments (e.g. PMD, PDL and CD) and transceiver intrinsic impairments. The method may be implemented using an Optical Spectrum Analyzer (OSA) and either the system transceivers or other commercial-grade transceivers. The proposed measurement method is based on mixed optical and electronic technologies, using an OSA and a transceiver pair. By measuring a signal quality metric Qm and the OSNR under varied power and ASE noise conditions, a constant value RBW that relates the GOSNR to the signal quality metric Qm is derived. The GOSNR is then obtained from these results.
    Type: Application
    Filed: February 24, 2021
    Publication date: September 2, 2021
    Applicant: EXFO Inc.
    Inventors: Gang HE, Daniel GARIEPY
  • Patent number: 11088759
    Abstract: There is provided a system and a method for extracting data traffic from an optical communication fiber by extracting a portion of the optical signal(s) propagating in the optical communication fiber, carrying the extracted signal over an optical fiber, amplifying the extracted optical signal and filtering the amplified signal to select one channel carrying data traffic. The optically-carried data traffic may then be input to an optical communication transceiver for converting the optically-carried data traffic into electrical data traffic, which carried data can be analyzed for data traffic monitoring applications.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: August 10, 2021
    Assignee: EXFO OY
    Inventors: Vesa Kyllönen, Sakari Yrttiaho, Daniel Gariepy, Gang He
  • Publication number: 20200374008
    Abstract: There is provided a system and a method for extracting data traffic from an optical communication fiber by extracting a portion of the optical signal(s) propagating in the optical communication fiber, carrying the extracted signal over an optical fiber, amplifying the extracted optical signal and filtering the amplified signal to select one channel carrying data traffic. The optically-carried data traffic may then be input to an optical communication transceiver for converting the optically-carried data traffic into electrical data traffic, which carried data can be analyzed for data traffic monitoring applications.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 26, 2020
    Applicant: EXFO Oy
    Inventors: Vesa KYLLÖNEN, Sakari YRTTIAHO, Daniel GARIEPY, Gang HE
  • Patent number: 10591385
    Abstract: There is provided a method, system and image capture device for determining a polarity of a multi-fiber cable link comprising a plurality of optical fiber links each connected between a first multi-fiber connector and a second multi-fiber connector, according to said polarity. Test light is injected into one or more of the optical fiber links via corresponding injection ports of the first multi-fiber connector, in accordance with a defined injection pattern; at least one polarity-testing image of the second multi-fiber connector is generated in which test light exiting at least one of the optical fiber links through one or more exit ports of the second multi-fiber connector is imaged as one or more spotlight spots in the polarity-testing image; and the polarity of the multi-fiber cable link is determined based on a pattern of said one or more spotlight spots in said polarity-testing image.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: March 17, 2020
    Assignee: EXFO Inc.
    Inventors: Stephane Perron, Daniel Gariepy, Nicolas Caron, Robert Baribault, Vincent Racine
  • Patent number: 10574378
    Abstract: A device and method for optical power measurement in an optical network supporting upstream and downstream signal propagation along an optical transmission path. An upstream wavelength analyzer receives upstream light extracted from the optical transmission path and is configured to determine an upstream spectral characteristic of the extracted upstream light. A downstream optical power meter assembly receives downstream light extracted from the optical transmission path and is configured to measure an optical power parameter of a downstream signal. A processing unit is configured to determine, based on the upstream spectral characteristic, at least one pass/fail threshold associated with the measured optical power parameter of the downstream signal.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: February 25, 2020
    Assignee: EXFO Inc.
    Inventors: Bernard Ruchet, Mario L'Heureux, Daniel Gariepy, Etienne Morin-Drouin
  • Publication number: 20190245641
    Abstract: A device and method for optical power measurement in an optical network supporting upstream and downstream signal propagation along an optical transmission path. An upstream wavelength analyzer receives upstream light extracted from the optical transmission path and is configured to determine an upstream spectral characteristic of the extracted upstream light. A downstream optical power meter assembly receives downstream light extracted from the optical transmission path and is configured to measure an optical power parameter of a downstream signal. A processing unit is configured to determine, based on the upstream spectral characteristic, at least one pass/fail threshold associated with the measured optical power parameter of the downstream signal.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 8, 2019
    Applicant: EXFO Inc.
    Inventors: Bernard RUCHET, Mario L'HEUREUX, Daniel GARIEPY, Etienne MORIN-DROUIN
  • Publication number: 20190170610
    Abstract: There is provided a method, system and image capture device for determining a polarity of a multi-fiber cable link comprising a plurality of optical fiber links each connected between a first multi-fiber connector and a second multi-fiber connector, according to said polarity. Test light is injected into one or more of the optical fiber links via corresponding injection ports of the first multi-fiber connector, in accordance with a defined injection pattern; at least one polarity-testing image of the second multi-fiber connector is generated in which test light exiting at least one of the optical fiber links through one or more exit ports of the second multi-fiber connector is imaged as one or more spotlight spots in the polarity-testing image; and the polarity of the multi-fiber cable link is determined based on a pattern of said one or more spotlight spots in said polarity-testing image.
    Type: Application
    Filed: April 11, 2018
    Publication date: June 6, 2019
    Applicant: EXFO Inc.
    Inventors: Stephane PERRON, Daniel GARIEPY, Nicolas CARON, Robert BARIBAULT, Vincent RACINE
  • Patent number: 10270554
    Abstract: A device and method for optical power measurement in an optical network supporting upstream and downstream signal propagation along an optical transmission path. The device includes an upstream wavelength analyzer receiving upstream light extracted from the optical transmission path and configured to determine an upstream spectral characteristic of the extracted upstream light. The device also includes a downstream filter assembly receiving downstream light extracted from the optical transmission path and configured to spectrally split the extracted downstream light into a plurality of downstream signals, one of which corresponding to a downstream signal of interest.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: April 23, 2019
    Assignee: EXFO INC.
    Inventors: Bernard Ruchet, Mario L'Heureux, Daniel Gariepy, Etienne Morin-Drouin
  • Patent number: 10128975
    Abstract: There is provided a method to discriminate NLE-induced signal deformation from ASE-noise on polarization multiplexed signals, in order to measure the OSNR under NLE conditions and/or characterize the NLE-induced signal deformation. In accordance with one aspect, the method is based on the acquisition of optical spectrum traces when the (data-carrying) optical communication signal is partially or completely extinguished (ASE-noise only), as well as with a live optical communication signal. Comparing traces acquired with different conditions and/or at different dates allows discrimination of the signal contribution, the ASE-noise contribution and the NLE-induced deformations on the SUT.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: November 13, 2018
    Assignee: EXFO Inc.
    Inventors: Gang He, Daniel Gariepy
  • Patent number: 9954610
    Abstract: There are provided methods and devices for determining a quality parameter characterizing an optical communication signal, the methods being performed by signal detection devices. At the transmitting end, there are obtained a signal power P1 of a first optical signal, a signal power P2 of a second optical signal, a signal power P3 of a third optical signal, optionally a signal power P4 of a fourth optical signal, and a total signal power Ps of a channel where the first, second, third and optional fourth optical signals are located. At a detection point, there are further obtained a signal power P1? of the first optical signal, a signal power P2? of the second optical signal, a signal power P3? of the third optical signal and optionally a signal power P4? of the fourth optical signal. There are then determined a signal deformation factor SDF and/or an optical signal to ASE noise ratio OSNR from the obtained signal powers.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: April 24, 2018
    Assignee: EXFO Inc.
    Inventors: Gang He, Daniel Gariepy
  • Publication number: 20180076890
    Abstract: A device and method for optical power measurement in an optical network supporting upstream and downstream signal propagation along an optical transmission path. The device includes an upstream wavelength analyzer receiving upstream light extracted from the optical transmission path and configured to determine an upstream spectral characteristic of the extracted upstream light. The device also includes a downstream filter assembly receiving downstream light extracted from the optical transmission path and configured to spectrally split the extracted downstream light into a plurality of downstream signals, one of which corresponding to a downstream signal of interest.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 15, 2018
    Inventors: Bernard RUCHET, Mario L'HEUREUX, Daniel GARIEPY, Etienne MORIN-DROUIN
  • Patent number: 9831948
    Abstract: A passive optical network (PON) device and method for optical power measurement along an optical transmission path supporting bidirectional propagation of downstream light and upstream light between two network elements of a PON is provided. The device includes an optical power splitter assembly extracting respective portions of the upstream and downstream light, and an upstream wavelength analyzer determining, from the extracted upstream light, an upstream spectral characteristic of the upstream light. The device also includes a processing unit determining, based on the upstream spectral characteristic, a downstream spectral characteristic of a downstream signal of interest among a plurality of downstream signals of the downstream light, and a downstream filter assembly filtering the extracted downstream light to select a portion of the downstream signal of interest.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: November 28, 2017
    Assignee: EXFO INC.
    Inventors: Bernard Ruchet, Mario L'Heureux, Daniel Gariepy
  • Patent number: 9673894
    Abstract: There is provided a method of determining at least one linear-crosstalk-related parameter of an optical signal-under-test having, within an optical channel bandwidth, at least a data-carrying signal contribution and a wavelength-dependent linear-crosstalk contribution arising from a data-carrying signal contribution of an adjacent optical signal associated with an adjacent channel to the optical signal-under-test, the method comprising: acquiring at least one optical spectrum trace encompassing a quasi-continuum of closely-spaced wavelengths over a spectral range extending to at least part of both the signal under test and the adjacent optical signal; and estimating said linear-crosstalk contribution using at least spectral properties of said at least one optical spectrum trace; wherein one of said at least one linear-crosstalk-related parameter is the linear-crosstalk contribution and is determined from said estimating.
    Type: Grant
    Filed: May 28, 2012
    Date of Patent: June 6, 2017
    Assignee: EXFO INC.
    Inventors: Daniel Gariepy, Gang He
  • Publication number: 20170085318
    Abstract: A passive optical network (PON) device and method for optical power measurement along an optical transmission path supporting bidirectional propagation of downstream light and upstream light between two network elements of a PON is provided. The device includes an optical power splitter assembly extracting respective portions of the upstream and downstream light, and an upstream wavelength analyzer determining, from the extracted upstream light, an upstream spectral characteristic of the upstream light. The device also includes a processing unit determining, based on the upstream spectral characteristic, a downstream spectral characteristic of a downstream signal of interest among a plurality of downstream signals of the downstream light, and a downstream filter assembly filtering the extracted downstream light to select a portion of the downstream signal of interest.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 23, 2017
    Inventors: Bernard RUCHET, Mario L'HEUREUX, Daniel GARIEPY
  • Patent number: 9596027
    Abstract: There is provided a method and an apparatus for determining quality parameters on a polarization-multiplexed optical signal based on an analysis of the power spectral density of the Signal-Under-Test (SUT). The method is predicated upon knowledge of the spectral shape of the signal in the absence of significant noise or spectral deformation. This knowledge is provided by a reference optical spectrum trace. Based on this knowledge and under the assumption that ASE noise level is approximately constant in wavelength over a given spectral range, the spectral deformation of the signal contribution of the SUT may be estimated using a comparison of the spectral variations of the optical spectrum trace of the SUT with that of the reference optical spectrum trace.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: March 14, 2017
    Assignee: Exfo Inc.
    Inventors: Gang He, Daniel Gariepy, Mats Skold
  • Patent number: 9438336
    Abstract: There is provided a method for determining a noise parameter characterizing an optical Signal-Under-Test (SUT) having a signal contribution, an Amplified Spontaneous Emission (ASE) noise contribution and a non-ASE optical noise contribution, such as a carrier-leakage contribution or a depolarized-signal contribution, within an optical-signal bandwidth. The method comprises acquiring optical spectrum trace(s) of the SUT, discriminating at least the non-ASE optical noise contribution from the ASE-noise contribution using the optical spectrum trace(s) and/or a trace obtained from the optical spectrum trace(s); and determining the noise parameter using discriminated non-ASE optical noise contribution and/or the discriminated ASE-noise contribution.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: September 6, 2016
    Assignee: EXFO INC.
    Inventors: Gang He, Daniel Gariepy, Hongxin Chen, Bernard Ruchet
  • Publication number: 20160142135
    Abstract: There are provided methods and devices for determining a quality parameter characterizing an optical communication signal, the methods being performed by signal detection devices. At the transmitting end, there are obtained a signal power P1 of a first optical signal, a signal power P2 of a second optical signal, a signal power P3 of a third optical signal, optionally a signal power P4 of a fourth optical signal, and a total signal power Ps of a channel where the first, second, third and optional fourth optical signals are located. At a detection point, there are further obtained a signal power P1? of the first optical signal, a signal power P2? of the second optical signal, a signal power P3? of the third optical signal and optionally a signal power P4? of the fourth optical signal. There are then determined a signal deformation factor SDF and/or an optical signal to ASE noise ratio OSNR from the obtained signal powers.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 19, 2016
    Inventors: Gang HE, Daniel GARIEPY
  • Publication number: 20160127074
    Abstract: There is provided a method to discriminate NLE-induced signal deformation from ASE-noise on polarization multiplexed signals, in order to measure the OSNR under NLE conditions and/or characterize the NLE-induced signal deformation. In accordance with one aspect, the method is based on the acquisition of optical spectrum traces when the (data-carrying) optical communication signal is partially or completely extinguished (ASE-noise only), as well as with a live optical communication signal. Comparing traces acquired with different conditions and/or at different dates allows discrimination of the signal contribution, the ASE-noise contribution and the NLE-induced deformations on the SUT.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 5, 2016
    Inventors: Gang HE, Daniel GARIEPY
  • Patent number: 9112604
    Abstract: There is provided a method for determining an in-band noise parameter, such as the Optical Signal-to-Noise Ratio (OSNR), on an optical signal-under-test (SUT) propagating along an optical communication link and comprising a data-carrying signal contribution of any arbitrary degree of polarization and a noise contribution. A spectral shape trace of data-carrying signal contribution in the SUT is estimated using a reference optical spectrum trace of a reference signal which comprises a data-carrying signal contribution that is spectrally representative of the data-carrying signal contribution of the SUT and a noise contribution which is at least approximately known. The data-carrying signal contribution is mathematically discriminated from said noise contribution in the SUT using the spectral shape trace and the test optical spectrum trace. The in-band noise parameter is then determined at least from the mathematically discriminated noise contribution.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: August 18, 2015
    Assignee: EXFO INC.
    Inventors: Daniel Gariepy, Gang He